Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生物資源暨農學院
  3. 農藝學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/71007
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor莊汶博(Wen-Po Chuang)
dc.contributor.authorHou-Ho Linen
dc.contributor.author林厚和zh_TW
dc.date.accessioned2021-06-17T04:48:11Z-
dc.date.available2023-08-07
dc.date.copyright2018-08-07
dc.date.issued2018
dc.date.submitted2018-07-31
dc.identifier.citation鄭清煥 (2002) 水稻保護植物保護圖鑑系列8¬—瘤野螟。行政院農業委員會動植物防疫檢疫局出版:130-137
許志聖, and 楊嘉凌. 2009. 水稻台中在來 1 號. 臺中區農業改良場特刊: 56-58.
廖君達. 2010. 水稻瘤野螟生態及管理技術. 臺中區農業專訊: 17-19.
廖君達. 2018. 水稻種原對瘤野螟抗性之研究. 中興大學農藝學系所學位論文: 1-178.
廖君達, 林金樹, and 陳啟吉. 2006. 瘤野螟族群消長, 防治適期及水稻品種抗性. 臺中區農業改良場研究彙報: 31-38.
蔡承豪. 2013. 地方農識的書寫與呈現: 以十九世紀北臺地區稻米品種變遷為例. 師大台灣史學報 (6),3-49.
蕭政弘. 2003. 利用生物技術進行作物抗病及抗蟲育種. 臺中區農業改良場特刊: 10-11.
簡涵如, 薛育婷, and 賴建成. 2016. 新穎體學質譜定量技術-SWATH. 化學 74: 235-244.
Aizat, W. M., S. Ibrahim, R. Rahnamaie-Tajadod, K.-K. Loke, H.-H. Goh, and N. M. Noor. 2018. Extensive mass spectrometry proteomics data of Persicaria minor herb upon methyl jasmonate treatment. Data in Brief 16: 1091-1094.
Álvarez, C., L. Calo, L. C. Romero, I. García, and C. Gotor. 2010. An O-acetylserine (thiol) lyase homolog with L-cysteine desulfhydrase activity regulates cysteine homeostasis in Arabidopsis. Plant Physiology 152: 656-669.
Álvarez, C., M. Ángeles Bermúdez, L. C. Romero, C. Gotor, and I. García. 2012. Cysteine homeostasis plays an essential role in plant immunity. New Phytologist 193: 165-177
Appel, H. M., H. Fescemyer, J. Ehlting, D. Weston, E. Rehrig, T. Joshi, D. Xu, J. Bohlmann, and J. Schultz. 2014. Transcriptional responses of Arabidopsis thaliana to chewing and sucking insect herbivores. Frontiers in Plant Science 5: 565.
Arnhard, K., A. Gottschall, F. Pitterl, and H. Oberacher. 2015. Applying ‘Sequential Windowed Acquisition of All Theoretical Fragment Ion Mass Spectra’ (SWATH) for systematic toxicological analysis with liquid chromatography-high-resolution tandem mass spectrometry. Analytical and Bioanalytical Chemistry 407: 405-414.
Baldwin, I. T. 2001. An ecologically motivated analysis of plant-herbivore interactions in native tobacco. Plant Physiology 127: 1449-1458.
Barakat, A., A. Bagniewska-Zadworna, C. J. Frost, and J. E. Carlson. 2010. Phylogeny and expression profiling of CAD and CAD-like genes in hybrid Populus (P. deltoides× P. nigra): evidence from herbivore damage for subfunctionalization and functional divergence. BMC plant biology 10: 100.
Biere, A., and A. E. Bennett. 2013. Three‐way interactions between plants, microbes and insects. Functional Ecology 27: 567-573.
Bilgin, D. D., J. A. Zavala, J. Zhu, S. J. Clough, D. R. Ort, and E. DeLUCIA. 2010. Biotic stress globally downregulates photosynthesis genes. Plant, Cell & Environment 33: 1597-1613.
Chen, Y., Q. Pang, S. Dai, Y. Wang, S. Chen, and X. Yan. 2011. Proteomic identification of differentially expressed proteins in Arabidopsis in response to methyl jasmonate. Journal of Plant Physiology 168: 995-1008.
Chini, A., S. Fonseca, G. Fernandez, B. Adie, J. Chico, O. Lorenzo, G. Garcia-Casado, I. López-Vidriero, F. Lozano, and M. Ponce. 2007. The JAZ family of repressors is the missing link in jasmonate signalling. Nature 448: 666.
Chini, A., I. Monte, A. M. Zamarreño, M. Hamberg, S. Lassueur, P. Reymond, S. Weiss, A. Stintzi, A. Schaller, and A. Porzel. 2018. An OPR3-independent pathway uses 4, 5-didehydrojasmonate for jasmonate synthesis. Nature Chemical Biology. 14.2 : 171.
Christapher, P. V., S. Parasuraman, J. M. A. Christina, M. Z. Asmawi, and M. Vikneswaran. 2015. Review on Polygonum minus. Huds, a commonly used food additive in Southeast Asia. Pharmacognosy research 7: 1.
Collins, R. M., M. Afzal, D. A. Ward, M. C. Prescott, S. M. Sait, H. H. Rees, and A. B. Tomsett. 2010. Differential proteomic analysis of Arabidopsis thaliana genotypes exhibiting resistance or susceptibility to the insect herbivore, Plutella xylostella. PLoS One 5: e10103.
Coppola, V., M. Coppola, M. Rocco, M. C. Digilio, C. D’Ambrosio, G. Renzone, R. Martinelli, A. Scaloni, F. Pennacchio, and R. Rao. 2013. Transcriptomic and proteomic analysis of a compatible tomato-aphid interaction reveals a predominant salicylic acid-dependent plant response. Bmc Genomics 14: 515.
Divol, F., F. Vilaine, S. Thibivilliers, J. Amselem, J.-C. Palauqui, C. Kusiak, and S. Dinant. 2005. Systemic response to aphid infestation by Myzus persicae in the phloem of Apium graveolens. Plant Molecular Biology 57: 517-540.
Florencio-Ortiz, V., S. Sellés-Marchart, J. Zubcoff-Vallejo, G. Jander, and J. L. Casas. 2018. Changes in the free amino acid composition of Capsicum annuum (pepper) leaves in response to Myzus persicae (green peach aphid) infestation. A comparison with water stress. PloS one 13: e0198093.
Fordyce, J. A., and A. A. Agrawal. 2001. The role of plant trichomes and caterpillar group size on growth and defence of the pipevine swallowtail Battus philenor. Journal of Animal Ecology 70: 997-1005.
Frago, E., M. Dicke, and H. C. J. Godfray. 2012. Insect symbionts as hidden players in insect–plant interactions. Trends in Ecology & Evolution 27: 705-711.
Gaspar, T., C. Penel, and T. Thorpe. 1982. A survey of their biochemical andphysiological roles in higher plants. Geneva. Switzerland: Univ Geneva: 83-88.
Gillet, L. C., P. Navarro, S. Tate, H. Röst, N. Selevsek, L. Reiter, R. Bonner, and R. Aebersold. 2012. Targeted data extraction of the MS/MS spectra generated by data-independent acquisition: a new concept for consistent and accurate proteome analysis. Molecular & Cellular Proteomics 11: O111. 016717.
Giri, A. P., H. Wünsche, S. Mitra, J. A. Zavala, A. Muck, A. Svatoš, and I. T. Baldwin. 2006. Molecular interactions between the specialist herbivore Manduca sexta (Lepidoptera, Sphingidae) and its natural host Nicotiana attenuata. VII. Changes in the plant's proteome. Plant Physiology 142: 1621-1641.
Giron, D., F. Dedeine, G. Dubreuil, E. Huguet, L. Mouton, Y. Outreman, F. Vavre, and J.-C. Simon. 2017. Influence of microbial symbionts on plant–insect interactions, pp. 225-257, Advances in Botanical Research, vol. 81. Elsevier.
Guo, T.-W. 2017. 探討瘤野螟生物小種及水稻品種之抗性. 臺灣大學農藝學研究所學位論文: 1-88.
Hartl, M., A. P. Giri, H. Kaur, and I. T. Baldwin. 2011. The multiple functions of plant serine protease inhibitors: defense against herbivores and beyond. Plant Signaling & Behavior 6: 1009-1011.
Haruta, M., I. T. Major, M. E. Christopher, J. J. Patton, and C. P. Constabel. 2001. A Kunitz trypsin inhibitor gene family from trembling aspen (Populus tremuloides Michx.): cloning, functional expression, and induction by wounding and herbivory. Plant Molecular Biology 46: 347-359.
Hatzfeld, Y., A. Maruyama, A. Schmidt, M. Noji, K. Ishizawa, and K. Saito. 2000. β-Cyanoalanine synthase is a mitochondrial cysteine synthase-like protein in spinach and Arabidopsis. Plant Physiology 123: 1163-1172.
Havko, N. E., I. T. Major, J. B. Jewell, E. Attaran, and G. A. Howe. 2016. Control of carbon assimilation and partitioning by jasmonate: an accounting of growth–defense tradeoffs. Plants 5: 7.
Howe, G. A. 2018. Plant hormones: Metabolic end run to jasmonate. Nature Chemical Biology 14: 109.
Hu, J., C. Rampitsch, and N. V. Bykova. 2015. Advances in plant proteomics toward improvement of crop productivity and stress resistance. Frontiers in Plant Science 6: 209.
Jamal, F., P. K. Pandey, D. Singh, and M. Khan. 2013. Serine protease inhibitors in plants: nature’s arsenal crafted for insect predators. Phytochemistry Reviews 12: 1-34.
James, P. 1997. Protein identification in the post-genome era: the rapid rise of proteomics. Quarterly Reviews of Biophysics 30: 279-331.
Johan, A. 2017. Conceptual Framework for Integrated Pest Management. Trends in Plant Science ISSN : 1360-1385.
Johnson, E. T., and P. F. Dowd. 2004. Differentially enhanced insect resistance, at a cost, in Arabidopsis thaliana constitutively expressing a transcription factor of defensive metabolites. Journal of Agricultural and Food Chemistry 52: 5135-5138.
Kaplan, I., R. Halitschke, A. Kessler, S. Sardanelli, and R. F. Denno. 2008. Constitutive and induced defenses to herbivory in above‐and belowground plant tissues. Ecology 89: 392-406.
Kliebenstein, D. J., J. Kroymann, P. Brown, A. Figuth, D. Pedersen, J. Gershenzon, and T. Mitchell-Olds. 2001. Genetic control of natural variation in Arabidopsis glucosinolate accumulation. Plant Physiology 126: 811-825.
Koiwa, H., R. E. Shade, K. Zhu‐Salzman, L. Subramanian, L. L. Murdock, S. S. Nielsen, R. A. Bressan, and P. M. Hasegawa. 1998. Phage display selection can differentiate insecticidal activity of soybean cystatins. The Plant Journal 14: 371-379.
Konno, K., C. Hirayama, M. Nakamura, K. Tateishi, Y. Tamura, M. Hattori, and K. Kohno. 2004. Papain protects papaya trees from herbivorous insects: role of cysteine proteases in latex. The Plant Journal 37: 370-378.
Koyama, Y., I. Yao, and S. I. Akimoto. 2004. Aphid galls accumulate high concentrations of amino acids: a support for the nutrition hypothesis for gall formation. Entomologia Experimentalis et Applicata 113: 35-44.
Liao, C.-T., and C.-L. Chen. 2017. Oviposition preference and larval performance of Cnaphalocrocis medinalis (Lepidoptera: Pyralidae) on rice genotypes. Journal of Economic Entomology 110: 1291-1297.
Liu, G.-T., L. Ma, W. Duan, B.-C. Wang, J.-H. Li, H.-G. Xu, X.-Q. Yan, B.-F. Yan, S.-H. Li, and L.-J. Wang. 2014. Differential proteomic analysis of grapevine leaves by iTRAQ reveals responses to heat stress and subsequent recovery. BMC Plant Biology 14: 110.
Lyons, R., J. M. Manners, and K. Kazan. 2013. Jasmonate biosynthesis and signaling in monocots: a comparative overview. Plant Cell Reports 32: 815-827.
Martinez-Medina, A., V. Flors, M. Heil, B. Mauch-Mani, C. M. Pieterse, M. J. Pozo, J. Ton, N. M. van Dam, and U. Conrath. 2016. Recognizing plant defense priming. Trends in Plant Science 21: 818-822.
Mithöfer, A., and W. Boland. 2012. Plant defense against herbivores: chemical aspects. Annual Review of Plant Biology 63: 431-450.
Mithöfer, A., and M. E. Maffei. 2017. General Mechanisms of Plant Defense and Plant Toxins. Plant Toxins: 3-24.
Morant, A. V., K. Jørgensen, C. Jørgensen, S. M. Paquette, R. Sánchez-Pérez, B. L. Møller, and S. Bak. 2008. β-Glucosidases as detonators of plant chemical defense. Phytochemistry 69: 1795-1813.
Muir, S. R., G. J. Collins, S. Robinson, S. Hughes, A. Bovy, C. R. De Vos, A. J. van Tunen, and M. E. Verhoeyen. 2001. Overexpression of petunia chalcone isomerase in tomato results in fruit containing increased levels of flavonols. Nature Biotechnology 19: 470.
Nathan, S. S., K. Kalaivani, K. Murugan, and P. G. Chung. 2005. The toxicity and physiological effect of neem limonoids on Cnaphalocrocis medinalis (Guenée) the rice leaffolder. Pesticide Biochemistry and Physiology 81: 113-122.
Nguyen, D., I. Rieu, C. Mariani, and N. M. van Dam. 2016. How plants handle multiple stresses: hormonal interactions underlying responses to abiotic stress and insect herbivory. Plant Mol Biol 91: 727-740.
Pan, X., R. Welti, and X. Wang. 2010. Quantitative analysis of major plant hormones in crude plant extracts by high-performance liquid chromatography-mass spectrometry. Nat Protoc 5: 986-992.
Panda, N., and G. Khush. 1995. Host plant resistance to insects Cab International.
Peeters, B. P., O. S. de Leeuw, G. Koch, and A. L. Gielkens. 1999. Rescue of Newcastle disease virus from cloned cDNA: evidence that cleavability of the fusion protein is a major determinant for virulence. Journal of Virology 73: 5001-5009.
Peukert, M., S. Weise, M. S. Röder, and I. E. Matthies. 2013. Development of SNP markers for genes of the phenylpropanoid pathway and their association to kernel and malting traits in barley. BMC Genetics 14: 97.
Pieterse, C. M., R. de Jonge, and R. L. Berendsen. 2016. The soil-borne supremacy. Trends in Plant Science 21: 171-173.
Pineda, A., I. Kaplan, and T. M. Bezemer. 2017. Steering soil microbiomes to suppress aboveground insect pests. Trends in Plant Science 22: 770-778.
Pineda, A., S.-J. Zheng, J. J. Van Loon, C. M. Pieterse, and M. Dicke. 2010. Helping plants to deal with insects: the role of beneficial soil-borne microbes. Trends in Plant Science 15: 507-514.
Raaijmakers, J. M., and M. Mazzola. 2016. Soil immune responses. Science 352: 1392-1393.
Rani, P. U., and Y. Jyothsna. 2010. Biochemical and enzymatic changes in rice plants as a mechanism of defense. Acta Physiologiae Plantarum 32: 695-701.
Rashid, M. M., M. Jahan, and K. S. Islam. 2016. Response of Adult Brown Planthopper Nilaparvata lugens (Stal) to Rice Nutrient Management. Neotrop Entomol 45: 588-596.
Rausch, T., and A. Wachter. 2005. Sulfur metabolism: a versatile platform for launching defence operations. Trends in Plant Science 10: 503-509.
Renwick, J. A. A., W. Zhang, M. Haribal, A. B. Attygalle, and K. D. Lopez. 2001. Dual chemical barriers protect a plant against different larval stages of an insect. Journal of Chemical Ecology 27: 1575-1583.
Reymond, P., N. Bodenhausen, R. M. Van Poecke, V. Krishnamurthy, M. Dicke, and E. E. Farmer. 2004. A conserved transcript pattern in response to a specialist and a generalist herbivore. The Plant Cell 16: 3132-3147.
Ryan, C. A. 1990. Protease inhibitors in plants: genes for improving defenses against insects and pathogens. Annual Review of Phytopathology 28: 425-449.
Salzig, M., A. Vilcinskas, and R. Fischer. 2017. Use of metalloproteinase inhibitors against bacterial infections. Google Patents.
Sasaki, K., T. Iwai, S. Hiraga, K. Kuroda, S. Seo, I. Mitsuhara, A. Miyasaka, M. Iwano, H. Ito, and H. Matsui. 2004. Ten rice peroxidases redundantly respond to multiple stresses including infection with rice blast fungus. Plant and Cell Physiology 45: 1442-1452.
Schlaeppi, K., N. Bodenhausen, A. Buchala, F. Mauch, and P. Reymond. 2008. The glutathione‐deficient mutant pad2‐1 accumulates lower amounts of glucosinolates and is more susceptible to the insect herbivore Spodoptera littoralis. The Plant Journal 55: 774-786.
Sharma, H., G. Sujana, and D. M. Rao. 2009. Morphological and chemical components of resistance to pod borer, Helicoverpa armigera in wild relatives of pigeonpea. Arthropod-Plant Interactions 3: 151-161.
Sharma, H., G. S. Kumar, V. Regode, J. Jaba, and S. Akbar. 2018. Plant Protease Inhibitors and their Interactions with Insect Gut Proteinases, pp. 1-47, The Biology of Plant-Insect Interactions. CRC Press.
Sidoli, S., S. Lin, L. Xiong, N. V. Bhanu, K. R. Karch, E. Johansen, C. Hunter, S. Mollah, and B. A. Garcia. 2015. Sequential window acquisition of all theoretical mass spectra (SWATH) analysis for characterization and quantification of histone post-translational modifications. Molecular & Cellular Proteomics 14: 2420-2428.
Simmonds, M., W. Blaney, and L. Fellows. 1990. Behavioral and electrophysiological study of antifeedant mechanisms associated with polyhydroxy alkaloids. Journal of Chemical Ecology 16: 3167-3196.
Simmonds, M. S., and P. C. Stevenson. 2001. Effects of isoflavonoids from Cicer on
larvae of Heliocoverpa armigera. Journal of Chemical Ecology 27: 965-977.
Stanton, R. C. 2012. Glucose‐6‐phosphate dehydrogenase, NADPH, and cell survival. IUBMB life 64: 362-369.
Subramanian, A., P. Tamayo, V. K. Mootha, S. Mukherjee, B. L. Ebert, M. A. Gillette, A. Paulovich, S. L. Pomeroy, T. R. Golub, and E. S. Lander. 2005. Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles. Proceedings of the National Academy of Sciences 102: 15545-15550.
Sugio, A., G. Dubreuil, D. Giron, and J.-C. Simon. 2014. Plant–insect interactions under bacterial influence: ecological implications and underlying mechanisms. Journal of Experimental Botany 66: 467-478.
Sytykiewicz, H. 2016. Transcriptional reprogramming of genes related to ascorbate and glutathione biosynthesis, turnover and translocation in aphid-challenged maize seedlings. Biochemical Systematics and Ecology 69: 236-251.
Treutter, D. 2005. Significance of flavonoids in plant resistance and enhancement of their biosynthesis. Plant Biology 7: 581-591.
Treutter, D. 2006. Significance of flavonoids in plant resistance: a review. Environmental Chemistry Letters 4: 147.
Tu, K.-Y., S.-F. Tsai, T.-W. Guo, H.-h. Lin, Z.-W. Yang, C.-T. Liao, and W.-P. Chuang. 2018. The Role of Plant Abiotic Factors on the Interactions Between Cnaphalocrocis medinalis (Lepidoptera: Crambidae) and its Host Plant. Environmental Entomology.
Wakuta, S., E. Suzuki, W. Saburi, H. Matsuura, K. Nabeta, R. Imai, and H. Matsui. 2011. OsJAR1 and OsJAR2 are jasmonyl-L-isoleucine synthases involved in wound-and pathogen-induced jasmonic acid signalling. Biochemical and Biophysical Research Communications 409: 634-639.
War, A. R., M. G. Paulraj, M. Y. War, and S. Ignacimuthu. 2011. Herbivore-and elicitor-induced resistance in groundnut to Asian armyworm, Spodoptera litura (Fab.) (Lepidoptera: Noctuidae). Plant Signaling & Behavior 6: 1769-1777.
War, A. R., M. G. Paulraj, T. Ahmad, A. A. Buhroo, B. Hussain, S. Ignacimuthu, and H. C. Sharma. 2012. Mechanisms of plant defense against insect herbivores. Plant Signaling & Behavior 7: 1306-1320.
Wei, Z., W. Hu, Q. Lin, X. Cheng, M. Tong, L. Zhu, R. Chen, and G. He. 2009. Understanding rice plant resistance to the Brown Planthopper (Nilaparvata lugens): a proteomic approach. Proteomics 9: 2798-2808.
Wolfson, J., and L. Murdock. 1987. Suppression of larval Colorado potato beetle growth and development by digestive proteinase inhibitors. Entomologia Experimentalis et Applicata 44: 235-240.
Xu, J., Q.-X. Wang, and J.-C. Wu. 2010. Resistance of cultivated rice varieties to Cnaphalocrocis medinalis (Lepidoptera: Pyralidae). Journal of Economic Entomology 103: 1166-1171.
Xu, J., H. Lan, H. Fang, X. Huang, H. Zhang, and J. Huang. 2015. Quantitative proteomic analysis of the rice (Oryza sativa L.) salt response. PLoS One 10: e0120978.
Yanar, O., and E. F. Topkara. 2017. The Effects of Plant Secondary Compounds on Herbivorous Insects. Turkish Journal of Agriculture-Food Science and Technology 5: 153-158.
Ye, M., Y. Song, J. Long, R. Wang, S. R. Baerson, Z. Pan, K. Zhu-Salzman, J. Xie, K. Cai, and S. Luo. 2013. Priming of jasmonate-mediated antiherbivore defense responses in rice by silicon. Proceedings of the National Academy of Sciences 110: E3631-E3639
Zhang, H., D. He, J. Yu, M. Li, R. N. Damaris, R. Gupta, S. T. Kim, and P. Yang. 2016. Analysis of dynamic protein carbonylation in rice embryo during germination through AP‐SWATH. Proteomics 16: 989-1000.
Zhou, S., Y.-R. Lou, V. Tzin, and G. Jander. 2015. Alteration of plant primary metabolism in response to insect herbivory. Plant Physiology 169: 1488-1498.
Zhu-Salzman, K., R. A. Salzman, J.-E. Ahn, and H. Koiwa. 2004. Transcriptional regulation of sorghum defense determinants against a phloem-feeding aphid. Plant Physiology 134: 420-43
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/71007-
dc.description.abstract水稻為亞洲主要的糧食作物,瘤野螟為危害台灣水稻的主要害蟲之一。在先前的研究顯示,水稻品種清流對瘤野螟具有抗蟲特性。在本實驗中, 以蛋白質體學的層面比較抗蟲品種清流與感蟲品種台中在來一號在瘤野螟幼蟲咬食葉片處理 0、 6、 24、72 小時後葉片可溶性蛋白組成與含量。透過非標定定量技術 (sequential windowacquisition of all theoretical fragment ion spectra; SWATH)分析,進行水稻葉片蛋白質鑑定及定量分析。經質譜分析以及統計方法計算並比對資料庫以及去除未知蛋白後可鑑定到 505 個蛋白質。 經 agriGO 分析, 比較不同時間點清流與 TN1 葉片蛋白質表現量與趨勢, 發現清流在抗蟲相關的黃酮類生合成途徑與茉莉酸(JA)相關途徑皆有特殊的表現狀況。 在未經咬食與面對瘤野螟幼蟲咬食的清流與 TN1 相比phenylalanine ammonia lyase 皆會大量表現,並且快速的表現黃酮類生合成途徑下游的 chalcone synthase、速率決定步驟酵素 chalcone--flavonone isomerase,推斷清流能快速地啟動黃酮類合成反應。 茉莉酸訊號傳遞路徑的關鍵酵素 lipoxygenase 與12-oxo-phytodienoic acid reductase 在清流表現量與趨勢也都顯示清流具有比 TN1更快速表現茉莉酸相關防禦反應的能力。這兩點都是能提升植物抗蟲能力的重要反應。其他生理表現如光合作用、氮的分配也都會和植物的耐受性有關,結果顯示光合作用相當複雜,但是仍有特殊的趨勢表現可以在未來深入探討,氮分配的部分則發現清流大量表現在二次代謝物生合成的反應,在解毒相關的半胱胺酸合成酶也有特殊的表現情,抗氧化逆境相關蛋白 Glutathione (GSH)的表現趨勢也顯示清流可能有更高效率的抗氧化能力。透過本研究可以更全面了解清流對瘤野螟的抗性,並可在未來將其特性應用於害物整合管理上。zh_TW
dc.description.abstractRice (Oryza sativa L.) is a major crop in Asia. Rice leaffolder (Cnaphalocrocis medinalis Guenée) is one of serious rice pests caused severe damage in Taiwan. Our previous study showed that rice variety QingLiu has C. medinalis–resistant ability. In this study, we compared protein expression pattern on C. medinalis–resistant rice variety, QingLiu, with susceptible check, Taichung Native 1 (TN1) under C. medinalis infestation. We collected damaged leaves and further extracted proteins after four time points (0, 6, 24, 72 hour infestation). The soluble proteins were further analyzed by sequential window acquisition of all theoretical fragment ion spectra (SWATH) to identify and quantify proteins in treatments. The identified proteins were further analyzed by agriGO to understand the protein gene ontology. After filtering out unknown proteins, there was 505 proteins identified. After compared protein expression pattern, we found proteins in flavonoid biosynthesis process (phenylalanine ammonia-lyase (PAL), chalcone synthase and rate limited step chalcone--flavonone isomerase) and jasmonic acid biosynthesis pathway (lipoxygenase and 12-oxo-phytodienoic acid reductase) were highly expressed in
QingLiu. Based on our finding, QingLiu would have better defense response ability against C. medinalis. In addition, we found that proteins involved in hotosynthesis and nitrogen resource distribution would have unique expression pattern after C. medinalis infestation. Furthermore, detoxification-related cysteine synthase and ROS-related protein GSH had higher expression pattern in QingLiu. Through our study, we could have better understanding on the resistant mechanism of QingLiu against C. medinalis.
en
dc.description.provenanceMade available in DSpace on 2021-06-17T04:48:11Z (GMT). No. of bitstreams: 1
ntu-107-R05621115-1.pdf: 3685706 bytes, checksum: 7f0e1674f206ca718f1cc59763321ed9 (MD5)
Previous issue date: 2018
en
dc.description.tableofcontents口試委員會審定書.......................................................................................................... i
中文摘要.......................................................................................................................... ii
Abstract............................................................................................................................ iii
目錄.............................................................................................................................. iv
圖目錄......................................................................................................................... vii
表目錄.......................................................................................................................... ix
附圖及附表目錄........................................................................................................... x
前言............................................................................................................................... 1
1. 植物與昆蟲交互作用............................................................................................ 2
2. 瘤野螟型態、生活史及對水稻之影響................................................................ 4
3. 水稻抗蟲品種清流與感蟲品種台中在來一號.................................................... 5
4. 植物抗蟲相關基因................................................................................................ 6
5. 二次代謝物與植物防禦反應................................................................................ 7
6. 蛋白質體學............................................................................................................ 9
7. 本論文研究目標...................................................................................................11
材料方法..................................................................................................................... 12
1. 實驗材料培養方法與試驗處理.......................................................................... 12
1.1. 植物材料與品種........................................................................................... 12
1.2. 水稻種子消毒與催芽................................................................................... 12
1.3. 水耕系統設置............................................................................................... 12
1.4. 人工照明室環境設置................................................................................... 13
2. 瘤野螟試驗處理.................................................................................................. 13
2.1. 瘤野螟飼養與繁殖....................................................................................... 13
2.2. 瘤野螟實驗處理-水稻總蛋白質分析試驗 ................................................. 13
3. 水稻總蛋白質分析.............................................................................................. 14
3.1. 試驗設計....................................................................................................... 14
3.2. 水稻總蛋白質萃取....................................................................................... 14
3.3. 蛋白質定量................................................................................................... 16
4. SDS-PAGE........................................................................................................... 16
5. 膠體內水解 (In gel digestion) ............................................................................ 17
6. 液相層析串聯式質譜分析.................................................................................. 18
7. 水稻蛋白質分析.................................................................................................. 19
7.1. Protein plot 軟體分析.................................................................................. 19
7.2. Gene Ontology (GO)分析與 agriGO v2.0 Singular Enrichment Analysis
(SEA) ..................................................................................................................... 20
7.3. Bioinformatics & Evolutionary Genomics 繪製范氏圖 (Venn diagrams).. 20
8. 統計分析.............................................................................................................. 20
結果............................................................................................................................. 22
1. 水稻蛋白質分析.................................................................................................. 22
1.1. 范氏圖 (Venn diagrams) .............................................................................. 22
1.1.1. 各時間點清流與 TN1 蛋白質含量差異之比較 .................................. 22
1.1.2. 清流與 TN1 蛋白質含量變化趨勢之比較 .......................................... 23
1.2. 各時間點清流與 TN1 蛋白質含量差異之比較 ......................................... 23
1.3. 清流與 TN1 蛋白質含量變化趨勢之比較 ................................................. 26
討論............................................................................................................................. 28
1. AgriGO Singular Enrichment Analysis (SEA) ................................................. 29
2. Secondary metabolic pathway ............................................................................. 30
3. Photosynthesis...................................................................................................... 32
4. 氮衍生物的代謝與胺基酸的利用 (amino acid and derivative metabolic
process) ....................................................................................................................... 34
半胱氨酸合成酶 cysteine synthase ........................................................................ 36
抗氧化逆境相關蛋白 (Glutathione)...................................................................... 37
5. 茉莉酸相關途徑 Jasmonic acid pathway............................................................ 38
6. 結語與未來展望.................................................................................................. 40
參考文獻........................................................................................................................ 78
dc.language.isozh-TW
dc.subject瘤野螟zh_TW
dc.subject台中在來 1 號zh_TW
dc.subject清流zh_TW
dc.subject非標定定量技術zh_TW
dc.subjectCnaphalocrocis medinalisen
dc.subjectTaichung Native 1en
dc.subjectQingLiuen
dc.subjectSWATHen
dc.title瘤野螟抗性水稻品種清流之蛋白質體分析zh_TW
dc.titleProteomic analysis of rice cultivar, Qing Liu,
resistant to Cnaphalocrocis medinalis
en
dc.typeThesis
dc.date.schoolyear106-2
dc.description.degree碩士
dc.contributor.oralexamcommittee張孟基(Men-Chi Chang),劉力瑜(Li-Yu Liu),賴建成(Chien-Chen Lai)
dc.subject.keyword瘤野螟,台中在來 1 號,清流,非標定定量技術,zh_TW
dc.subject.keywordCnaphalocrocis medinalis,Taichung Native 1,QingLiu,SWATH,en
dc.relation.page111
dc.identifier.doi10.6342/NTU201802195
dc.rights.note有償授權
dc.date.accepted2018-08-01
dc.contributor.author-college生物資源暨農學院zh_TW
dc.contributor.author-dept農藝學研究所zh_TW
顯示於系所單位:農藝學系

文件中的檔案:
檔案 大小格式 
ntu-107-1.pdf
  未授權公開取用
3.6 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved