Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 理學院
  3. 數學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/70932
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor葉永南(Yeong-Nan Yeh)
dc.contributor.authorShiuan Fuen
dc.contributor.author傅璿zh_TW
dc.date.accessioned2021-06-17T04:44:31Z-
dc.date.available2018-11-02
dc.date.copyright2018-08-07
dc.date.issued2018
dc.date.submitted2018-08-02
dc.identifier.citation[1] M. D. Atkinson, Restricted permutations, Discrete Mathematics 195 (1999) 27-38
[2] M. H. Albert, R. E. L. Aldred, M. D. Atkinson, C. Handley and D. Holton, Permutations of a Multiset Avoiding Permutations of Length 3, Europ. J. Combinatorics (2001) 22, 1021–1031
[3] C. Banderier, P. Flajolet, D. Gardy, M. Bousquet-Melou, A. Denise, D. GouyouBeauchamps, Generating functions for generating trees, Discrete Mathematics 246 (1-3) (2002) 29-55
[4] F. R. K. Chung, R. L. Graham, V. E. Hoggatt, Jr., M. Kleiman, The number of Baxter permutations, Journal of Combinatorial Theory, Series A, 24, 382–394 (1978)
[5] D. Callan, S. M. Ma, T. Mansour, Restricted Stirling Permutations, Taiwanese Journal of Mathematics (2016) Vol. 20, No. 5, 957–978
[6] S. Dulucq, S. Gire, J. West, Permutations with forbidden subsequences and nonseparable planar maps, Discrete Mathematics 153 (1996) 85-103
[7] S. Dulucq, S. Gire, O. Guibert, A combinatorial proof of J.West′s conjecture, Discrete Mathematics 187 (1998) 71-96
[8] G. H. Duh, Y. C. R. Lin, S. M. Ma, Y. N. Yeh, Some statistics on Stirling permutations and Stirling derangements, Discrete Mathematics 341 (2018) 2478–2484
[9] I. Gessel, R. P. Stanley, Stirling polynomials, Journal of Combinatorial Theory, Series A 24, 24-33 (1978)
[10] O. Guibert, Stack words, standard Young tableaux, permutations with forbidden subsequences and planar maps, Discrete Mathematics 210 (2000) 71–85
[11] D. E. Knuth,The art of computer programming, vol.1, 1st Edition, Addison-Wesley (1968)
[12] M. Kuba, A. Panholzer, Enumeration formulæ for pattern restricted Stirling permutations, Discrete Mathematics 312 (2012) 3179–3194
[13] R. Simon, F. W. Schmidt, Restricted Permutations, Europ.J. Combinatorics (1985) 6, 383-406
[14] W. T. Tutte, A census of planar maps, Canadian Journal of Mathematics (1963)
[15] J. West, Permutations with forbidden subsequences and stack-sortable permutations, Ph.D. Thesis, MIT, Cambridge, MA, 1990
[16] D. Zeilberger, A proof of Julian West′s conjecture that the number of two-stack sortable permutations of length n is 2(3n)!/((n+1)!(2n+1)!), Discrete Mathematics. 102 (1992) 85–93
[17]“Baxter permutation.”, Wikipedia, Wikimedia Foundation, 19 June 2018, en.wikipedia.org/wiki/Baxter_permutation
[18]“Permutation Pattern.”, Wikipedia, Wikimedia Foundation, 27 June 2018,
en.wikipedia.org/wiki/Permutation_pattern
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/70932-
dc.description.abstractThe goal of this thesis is to derive properties for the generating functions of σ-pattern avoiding Stirling derangements where σ is a permutation in the symmetric group S3.
This thesis is organized as follows: In chapter 1, we roughly make a introduction to the history of pattern avoiding sequences. In chapter 2, we state the kernel method. In chapter 3, we derive the generating functions of σ-pattern avoiding Stirling derangements where σ is a permutation in S3. Since there are 6 cases, the main results will be stated by 6 main theorems.
en
dc.description.provenanceMade available in DSpace on 2021-06-17T04:44:31Z (GMT). No. of bitstreams: 1
ntu-107-R05221013-1.pdf: 910581 bytes, checksum: eee291426da00fb31f0ed5ade580de52 (MD5)
Previous issue date: 2018
en
dc.description.tableofcontentsVerification Letter from the Oral Examination Committee (in Chinese) I
Acknowledgements (in Chinese) II
Abstract (in Chinese) III
Abstract (in English) IV
1 Introduction 1
2 Kernel method 13
3 Main Results 19
3.1 321-avoiding Stirling derangements 19
3.2 312-avoiding Stirling derangements 28
3.3 231-avoiding Stirling derangements 34
3.4 213-avoiding Stirling derangements 36
3.5 132-avoiding Stirling derangements 42
3.6 123-avoiding Stirling derangements 47
3.7 Summary table 51
Reference 53
dc.language.isoen
dc.subjectStirling排列zh_TW
dc.subject錯位排列zh_TW
dc.subject字串禁位zh_TW
dc.subject生成函數zh_TW
dc.subject核方法zh_TW
dc.subjectPattern avoidanceen
dc.subjectGenerating functionen
dc.subjectStirling permutationen
dc.subjectDerangementen
dc.subjectKernel methoden
dc.title字串禁位Stirling錯排的研究zh_TW
dc.titleOn Pattern Avoiding Stirling Derangementsen
dc.typeThesis
dc.date.schoolyear106-2
dc.description.degree碩士
dc.contributor.coadvisor林惠雯(Hui-Wen Lin)
dc.contributor.oralexamcommittee周文賢(Wun-Seng Chou),馬俊(Jun Ma),馬世美(Shi-Mei Ma)
dc.subject.keywordStirling排列,錯位排列,字串禁位,生成函數,核方法,zh_TW
dc.subject.keywordStirling permutation,Derangement,Pattern avoidance,Generating function,Kernel method,en
dc.relation.page55
dc.identifier.doi10.6342/NTU201802156
dc.rights.note有償授權
dc.date.accepted2018-08-03
dc.contributor.author-college理學院zh_TW
dc.contributor.author-dept數學研究所zh_TW
顯示於系所單位:數學系

文件中的檔案:
檔案 大小格式 
ntu-107-1.pdf
  未授權公開取用
889.24 kBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved