請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/70928完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 林裕彬 | |
| dc.contributor.author | Wen-Hao Chang | en |
| dc.contributor.author | 張文豪 | zh_TW |
| dc.date.accessioned | 2021-06-17T04:44:17Z | - |
| dc.date.available | 2023-08-07 | |
| dc.date.copyright | 2018-08-07 | |
| dc.date.issued | 2018 | |
| dc.date.submitted | 2018-08-03 | |
| dc.identifier.citation | 1. Aguiar, A. P. D., Vieira, I. C. G., Assis, T. O., Dalla‐Nora, E. L., Toledo, P. M., Oliveira Santos‐Junior, R. A., ... & Nobre, C. A. (2016). Land use change emission scenarios: anticipating a forest transition process in the Brazilian Amazon. Global change biology, 22(5), 1821-1840.
2. Andersen, H. E., Kronvang, B., Larsen, S. E., Hoffmann, C. C., Jensen, T. S., & Rasmussen, E. K. (2006). Climate-change impacts on hydrology and nutrients in a Danish lowland river basin. Science of the Total Environment, 365(1-3), 223-237. 3. Alegria-Moran, R., Miranda, D., Parra, A., & Lapierre, L. (2017). What do we know about the behavior of animal rabies in Chile through the last years?. Online journal of public health informatics, 9(1). 4. Amaral, P. V., & Anselin, L. (2014). Finite sample properties of Moran's I test for spatial autocorrelation in tobit models. Papers in Regional Science, 93(4), 773-781. 5. Anselin, L. (1995). Local indicators of spatial association—LISA. Geographical analysis, 27(2), 93-115. 6. Assuncao, R. M., & Reis, E. A. (1999). A new proposal to adjust Moran's I for population density. Statistics in medicine, 18(16), 2147-2162. 7. Bagdon, B. A., Huang, C. H., & Dewhurst, S. (2016). Managing for ecosystem services in northern Arizona ponderosa pine forests using a novel simulation-to-optimization methodology. Ecological modelling, 324, 11-27. 8. Bangash, R. F., Passuello, A., Sanchez-Canales, M., Terrado, M., López, A., Elorza, F. J., ... & Schuhmacher, M. (2013). Ecosystem services in Mediterranean river basin: climate change impact on water provisioning and erosion control. Science of the Total Environment, 458, 246-255. 9. Bargaoui, Z. K., & Chebbi, A. (2009). Comparison of two kriging interpolation methods applied to spatiotemporal rainfall. Journal of Hydrology, 365(1-2), 56-73. 10. Batisani, N., & Yarnal, B. (2009). Uncertainty awareness in urban sprawl simulations: Lessons from a small US metropolitan region. Land Use Policy, 26(2), 178-185. 11. Bivand, R. S., Wilk, J., & Kossowski, T. (2017). Spatial association of population pyramids across Europe: The application of symbolic data, cluster analysis and join-count tests. Spatial Statistics, 21, 339-361. 12. Blicharska, M., Smithers, R. J., Hedblom, M., Hedenås, H., Mikusiński, G., Pedersen, E., ... & Svensson, J. (2017). Shades of grey challenge practical application of the cultural ecosystem services concept. Ecosystem services, 23, 55-70. 13. Boithias, L., Acuña, V., Vergoñós, L., Ziv, G., Marcé, R., & Sabater, S. (2014). Assessment of the water supply: demand ratios in a Mediterranean basin under different global change scenarios and mitigation alternatives. Science of the Total Environment, 470, 567-577. 14. Bryce, R., Irvine, K. N., Church, A., Fish, R., Ranger, S., & Kenter, J. O. (2016). Subjective well-being indicators for large-scale assessment of cultural ecosystem services. Ecosystem Services, 21, 258-269. 15. Bull, J. W., Jobstvogt, N., Böhnke-Henrichs, A., Mascarenhas, A., Sitas, N., Baulcomb, C., ... & Carter-Silk, E. (2016). Strengths, Weaknesses, Opportunities and Threats: A SWOT analysis of the ecosystem services framework. Ecosystem services, 17, 99-111. 16. Chan, K. M., Shaw, M. R., Cameron, D. R., Underwood, E. C., & Daily, G. C. (2006). Conservation planning for ecosystem services. PLoS biology, 4(11), e379. 17. Change, I. C. (2007). Mitigation of climate change. Summary for Policymakers, 10(5.4). 18. Chen, Y., Xu, Y., & Yin, Y. (2009). Impacts of land use change scenarios on storm-runoff generation in Xitiaoxi basin, China. Quaternary International, 208(1), 121-128. 19. Chiang, L. C., Lin, Y. P., Huang, T., Schmeller, D. S., Verburg, P. H., Liu, Y. L., & Ding, T. S. (2014). Simulation of ecosystem service responses to multiple disturbances from an earthquake and several typhoons. Landscape and Urban Planning, 122, 41-55. 20. Cimon-Morin, J., Darveau, M., & Poulin, M. (2016). Site complementarity between biodiversity and ecosystem services in conservation planning of sparsely-populated regions. Environmental conservation, 43(1), 56-68. 21. Costanza, R., de Groot, R., Sutton, P., Van der Ploeg, S., Anderson, S. J., Kubiszewski, I., ... & Turner, R. K. (2014). Changes in the global value of ecosystem services. Global environmental change, 26, 152-158. 22. Crossman, N. D., Bryan, B. A., de Groot, R. S., Lin, Y. P., & Minang, P. A. (2013). Land science contributions to ecosystem services. Current Opinion in Environmental Sustainability, 5(5), 509-514. 23. Crossman, N. D., Burkhard, B., Nedkov, S., Willemen, L., Petz, K., Palomo, I., ... & Alkemade, R. (2013). A blueprint for mapping and modelling ecosystem services. Ecosystem services, 4, 4-14. 24. Cui, G., Wang, X., Li, C., Li, Y., Yan, S., & Yang, Z. (2017). Water use efficiency and TN/TP concentrations as indicators for watershed land-use management: A case study in Miyun District, north China. Ecological Indicators. 25. Deventer, H., Nel, J., Mbona, N., Job, N., Ewart‐Smith, J., Snaddon, K., & Maherry, A. (2016). Desktop classification of inland wetlands for systematic conservation planning in data‐scarce countries: mapping wetland ecosystem types, disturbance indices and threatened species associations at country‐wide scale. Aquatic Conservation: Marine and Freshwater Ecosystems, 26(1), 57-75. 26. Dirnböck, T., Foldal, C., Djukic, I., Kobler, J., Haas, E., Kiese, R., & Kitzler, B. (2017). Historic nitrogen deposition determines future climate change effects on nitrogen retention in temperate forests. Climatic Change, 144(2), 221-235. 27. Doetterl, S., Stevens, A., Six, J., Merckx, R., Van Oost, K., Pinto, M. C., ... & Boeckx, P. (2015). Soil carbon storage controlled by interactions between geochemistry and climate. Nature Geoscience, 8(10), 780. 28. Egoh, B., Rouget, M., Reyers, B., Knight, A. T., Cowling, R. M., van Jaarsveld, A. S., & Welz, A. (2007). Integrating ecosystem services into conservation assessments: a review. Ecological Economics, 63(4), 714-721. 29. Fan, M., & Shibata, H. (2015). Simulation of watershed hydrology and stream water quality under land use and climate change scenarios in Teshio River watershed, northern Japan. Ecological Indicators, 50, 79-89. 30. Fan, M., Shibata, H., & Chen, L. (2018). Spatial conservation of water yield and sediment retention hydrological ecosystem services across Teshio watershed, northernmost of Japan. Ecological Complexity, 33, 1-10. 31. Fan, M., Shibata, H., & Wang, Q. (2016). Optimal conservation planning of multiple hydrological ecosystem services under land use and climate changes in Teshio river watershed, northernmost of Japan. Ecological indicators, 62, 1-13. 32. Fish, R., Church, A., & Winter, M. (2016). Conceptualising cultural ecosystem services: a novel framework for research and critical engagement. Ecosystem Services, 21, 208-217. 33. Foresta, M., Carranza, M. L., Garfì, V., Di Febbraro, M., Marchetti, M., & Loy, A. (2016). A systematic conservation planning approach to fire risk management in Natura 2000 sites. Journal of environmental management, 181, 574-581. 34. Gouveia, A. R., Bjørnstad, O. N., & Tkadlec, E. (2016). Dissecting geographic variation in population synchrony using the common vole in central Europe as a test bed. Ecology and evolution, 6(1), 212-218. 35. Grimes, D. I. F., Pardo-Iguzquiza, E., & Bonifacio, R. (1999). Optimal areal rainfall estimation using raingauges and satellite data. Journal of hydrology, 222(1-4), 93-108. 36. Gro Harlem Brundtland,1987, Our Common Future 37. Guerry, A. D., Polasky, S., Lubchenco, J., Chaplin-Kramer, R., Daily, G. C., Griffin, R., ... & Feldman, M. W. (2015). Natural capital and ecosystem services informing decisions: From promise to practice. Proceedings of the National Academy of Sciences, 112(24), 7348-7355. 38. Guo, L. B., & Gifford, R. M. (2002). Soil carbon stocks and land use change: a meta analysis. Global change biology, 8(4), 345-360. 39. Hamel, P., & Bryant, B. P. (2017). Uncertainty assessment in ecosystem services analyses: Seven challenges and practical responses. Ecosystem Services, 24, 1-15. 40. Heather Tallis,(2013),Integrated valuation of environmental servicrs and tradeoffs 41. Hellmann, F., & Verburg, P. H. (2010). Impact assessment of the European biofuel directive on land use and biodiversity. Journal of environmental management, 91(6), 1389-1396. 42. Hudson, G., & Wackernagel, H. (1994). Mapping temperature using kriging with external drift: theory and an example from Scotland. International journal of Climatology, 14(1), 77-91. 43. Jantz, S. M., Barker, B., Brooks, T. M., Chini, L. P., Huang, Q., Moore, R. M., ... & Hurtt, G. C. (2015). Future habitat loss and extinctions driven by land‐use change in biodiversity hotspots under four scenarios of climate‐change mitigation. Conservation Biology, 29(4), 1122-1131. 44. Joost, S. (2017). Spatial dependence of genetic data related to human health and livestock disease resistance: a role for geography to support the One Health approach. International Journal of Health, Animal Science and Food Safety, 4(1s). 45. Kalnay, E., & Cai, M. (2003). Impact of urbanization and land-use change on climate. Nature, 423(6939), 528. 46. Kamali, M., Delkash, M., & Tajrishy, M. (2017). Evaluation of permeable pavement responses to urban surface runoff. Journal of environmental management, 187, 43-53. 47. Karabulut, A., Egoh, B. N., Lanzanova, D., Grizzetti, B., Bidoglio, G., Pagliero, L., ... & Vandecasteele, I. (2016). Mapping water provisioning services to support the ecosystem–water–food–energy nexus in the Danube river basin. Ecosystem services, 17, 278-292. 48. Kenter, J. O., Jobstvogt, N., Watson, V., Irvine, K. N., Christie, M., & Bryce, R. (2016). The impact of information, value-deliberation and group-based decision-making on values for ecosystem services: integrating deliberative monetary valuation and storytelling. Ecosystem Services, 21, 270-290. 49. Kołodziejczak, A., & Rudnicki, R. (2017). Spatial Diversification of Energy Crops in Polish Agriculture: A Study of Plantation Concentration Based On Local Indicators of Spatial Association (Lisa). Quaestiones Geographicae, 36(2), 49-56. 50. Kremen, C., & Ostfeld, R. S. (2005). A call to ecologists: measuring, analyzing, and managing ecosystem services. Frontiers in Ecology and the Environment, 3(10), 540-548. 51. Lee, C., Schlemme, C., Murray, J., & Unsworth, R. (2015). The cost of climate change: Ecosystem services and wildland fires. Ecological Economics, 116, 261-269. 52. Lehtomäki, J., & Moilanen, A. (2013). Methods and workflow for spatial conservation prioritization using Zonation. Environmental Modelling & Software, 47, 128-137. 53. Lin, W. C., Lin, Y. P., Lien, W. Y., Wang, Y. C., Lin, C. T., Chiou, C. R., ... & Crossman, N. D. (2014). Expansion of protected areas under climate change: An example of mountainous tree species in taiwan. Forests, 5(11), 2882-2904. 54. Lin, Y. P., Chu, H. J., Wu, C. F., & Verburg, P. H. (2011). Predictive ability of logistic regression, auto-logistic regression and neural network models in empirical land-use change modeling–a case study. International Journal of Geographical Information Science, 25(1), 65-87. 55. Lin, Y. P., Hong, N. M., Chiang, L. C., Liu, Y. L., & Chu, H. J. (2012). Adaptation of land-use demands to the impact of climate change on the hydrological processes of an urbanized watershed. International journal of environmental research and public health, 9(11), 4083-4102. 56. Lin, Y. P., Hong, N. M., Wu, P. J., & Lin, C. J. (2007). Modeling and assessing land-use and hydrological processes to future land-use and climate change scenarios in watershed land-use planning. Environmental Geology, 53(3), 623-634. 57. Lin, Y. P., Hong, N. M., Wu, P. J., Wu, C. F., & Verburg, P. H. (2007). Impacts of land use change scenarios on hydrology and land use patterns in the Wu-Tu watershed in Northern Taiwan. Landscape and urban planning, 80(1-2), 111-126. 58. Lin, Y. P., Huang, C. W., Ding, T. S., Wang, Y. C., Hsiao, W. T., Crossman, N. D., ... & Schmeller, D. S. (2014). Conservation planning to zone protected areas under optimal landscape management for bird conservation. Environmental modelling & software, 60, 121-133. 無 59. Lin, Y. P., Lin, W. C., Anthony, J., Ding, T. S., Mihoub, J. B., Henle, K., & Schmeller, D. S. (2018). Assessing uncertainty and performance of ensemble conservation planning strategies. Landscape and Urban Planning, 169, 57-69. 60. Lin, Y. P., Lin, W. C., Li, H. Y., Wang, Y. C., Hsu, C. C., Lien, W. Y., ... & Petway, J. R. (2017). Integrating social values and ecosystem services in systematic conservation planning: A case study in Datuan watershed. Sustainability, 9(5), 718. 61. Lin, Y. P., Lin, W. C., Lien, W. Y., Anthony, J., & Petway, J. R. (2017). Identifying Reliable Opportunistic Data for Species Distribution Modeling: A Benchmark Data Optimization Approach. Environments, 4(4), 81. 62. Lin, Y. P., Lin, W. C., Wang, Y. C., Lien, W. Y., Huang, T., Hsu, C. C., ... & Crossman, N. D. (2017). Systematically designating conservation areas for protecting habitat quality and multiple ecosystem services. Environmental Modelling & Software, 90, 126-146. 63. Liu, J., Li, J., Qin, K., Zhou, Z., Yang, X., & Li, T. (2017). Changes in land-uses and ecosystem services under multi-scenarios simulation. Science of the Total Environment, 586, 522-526. 64. Liu, X., Liang, X., Li, X., Xu, X., Ou, J., Chen, Y., ... & Pei, F. (2017). A future land use simulation model (FLUS) for simulating multiple land use scenarios by coupling human and natural effects. Landscape and Urban Planning, 168, 94-116. 65. Long, S. J., Long, J. S., & Freese, J. (2006). Regression models for categorical dependent variables using Stata. Stata press. 66. Mace, G. M., & Baillie, J. E. (2007). The 2010 biodiversity indicators: challenges for science and policy. Conservation Biology, 21(6), 1406-1413. 67. Maes, J., Liquete, C., Teller, A., Erhard, M., Paracchini, M. L., Barredo, J. I., ... & Meiner, A. (2016). An indicator framework for assessing ecosystem services in support of the EU Biodiversity Strategy to 2020. Ecosystem services, 17, 14-23. 68. Malhi, Y., Roberts, J. T., Betts, R. A., Killeen, T. J., Li, W., & Nobre, C. A. (2008). Climate change, deforestation, and the fate of the Amazon. science, 319(5860), 169-172. 69. Manhães, A. P., Mazzochini, G. G., Oliveira‐Filho, A. T., Ganade, G., & Carvalho, A. R. (2016). Spatial associations of ecosystem services and biodiversity as a baseline for systematic conservation planning. Diversity and Distributions, 22(9), 932-943. 70. Margules, C. R., & Pressey, R. L. (2000). Systematic conservation planning. Nature, 405(6783), 243. 71. Mas, J. F., Kolb, M., Paegelow, M., Olmedo, M. T. C., & Houet, T. (2014). Inductive pattern-based land use/cover change models: A comparison of four software packages. Environmental Modelling & Software, 51, 94-111. 72. Matthews, K. A., Holt, J., Gaglioti, A. H., Lochner, K. A., Shoff, C., McGuire, L. C., & Greenlund, K. J. (2016). Peer Reviewed: County-Level Variation in Per Capita Spending for Multiple Chronic Conditions Among Fee-for-Service Medicare Beneficiaries, United States, 2014. Preventing chronic disease, 13. 73. Mazzocchi, C., Corsi, S., & Sali, G. (2017). Agricultural land consumption in periurban areas: a methodological approach for risk assessment using artificial neural networks and spatial correlation in Northern Italy. Applied Spatial Analysis and Policy, 10(1), 3-20. 74. McIntosh, E. J., McKinnon, M. C., Pressey, R. L., & Grenyer, R. (2016). What is the extent and distribution of evidence on effectiveness of systematic conservation planning around the globe? A systematic map protocol. Environmental Evidence, 5(1), 15. 75. McIntosh, E. J., Pressey, R. L., Lloyd, S., Smith, R. J., & Grenyer, R. (2017). The Impact of Systematic Conservation Planning. Annual Review of Environment and Resources, 42, 677-697. 76. Mehdi, B., Lehner, B., Gombault, C., Michaud, A., Beaudin, I., Sottile, M. F., & Blondlot, A. (2015). Simulated impacts of climate change and agricultural land use change on surface water quality with and without adaptation management strategies. Agriculture, Ecosystems & Environment, 213, 47-60. 77. Mei, Z., Wu, H., & Li, S. (2017). Simulating land-use changes by incorporating spatial autocorrelation and self-organization in CLUE-S modeling: a case study in Zengcheng District, Guangzhou, China. Frontiers of Earth Science, 1-12. 78. Moilanen, A., Franco, A. M., Early, R. I., Fox, R., Wintle, B., & Thomas, C. D. (2005). Prioritizing multiple-use landscapes for conservation: methods for large multi-species planning problems. Proceedings of the Royal Society of London B: Biological Sciences, 272(1575), 1885-1891. 79. Moody, A., & Woodcock, C. (1994). Scale-dependent errors in the estimation of land-cover proportions: Implications for global land-cover datasets. Photogrammetric engineering and remote sensing, 60(5), 585-594. 80. Mouchet, M. A., Rega, C., Lasseur, R., Georges, D., Paracchini, M. L., Renaud, J., ... & Lavorel, S. (2017). Ecosystem service supply by European landscapes under alternative land-use and environmental policies. International Journal of Biodiversity Science, Ecosystem Services & Management, 13(1), 342-354. 81. Mukhtar, H., Lin, Y. P., Shipin, O. V., & Petway, J. R. (2017). Modeling Nitrogen Dynamics in a Waste Stabilization Pond System Using Flexible Modeling Environment with MCMC. International journal of environmental research and public health, 14(7), 765. 82. Myers, C. A., Slack, T., Martin, C. K., Broyles, S. T., & Heymsfield, S. B. (2016). Change in obesity prevalence across the United States is influenced by recreational and healthcare contexts, food environments, and Hispanic populations. PloS one, 11(2), e0148394. 83. Myers, N., Mittermeier, R. A., Mittermeier, C. G., Da Fonseca, G. A., & Kent, J. (2000). Biodiversity hotspots for conservation priorities. Nature, 403(6772), 853. 84. Nelson, E., Mendoza, G., Regetz, J., Polasky, S., Tallis, H., Cameron, D., ... & Lonsdorf, E. (2009). Modeling multiple ecosystem services, biodiversity conservation, commodity production, and tradeoffs at landscape scales. Frontiers in Ecology and the Environment, 7(1), 4-11. 85. Nelson, J. K., & Brewer, C. A. (2017). Evaluating data stability in aggregation structures across spatial scales: revisiting the modifiable areal unit problem. Cartography and Geographic Information Science, 44(1), 35-50. 86. Oliver, T. H., Marshall, H. H., Morecroft, M. D., Brereton, T., Prudhomme, C., & Huntingford, C. (2015). Interacting effects of climate change and habitat fragmentation on drought-sensitive butterflies. Nature Climate Change, 5(10), 941. 87. Ord, J. K., & Getis, A. (2001). Testing for local spatial autocorrelation in the presence of global autocorrelation. Journal of Regional Science, 41(3), 411-432. 88. O'reilly, C. M., Alin, S. R., Plisnier, P. D., Cohen, A. S., & McKee, B. A. (2003). Climate change decreases aquatic ecosystem productivity of Lake Tanganyika, Africa. Nature, 424(6950), 766-768. 89. Paradis, E. (2017). Moran’s autocorrelation coefficient in comparative methods. 90. Parker, D. C., Manson, S. M., Janssen, M. A., Hoffmann, M. J., & Deadman, P. (2003). Multi‐agent systems for the simulation of land‐use and land‐cover change: A review. Annals of the association of American Geographers, 93(2), 314-337. 91. Paroissien, J. B., Darboux, F., Couturier, A., Devillers, B., Mouillot, F., Raclot, D., & Le Bissonnais, Y. (2015). A method for modeling the effects of climate and land use changes on erosion and sustainability of soil in a Mediterranean watershed (Languedoc, France). Journal of environmental management, 150, 57-68. 92. Poff, N. L., & Brinson, M. M. Day jr. JW 2002. Aquatic ecosystems and global climate change. Pew Center on Global Climate Change. Arlington, Virginia. 93. Pontius, R. G., Boersma, W., Castella, J. C., Clarke, K., de Nijs, T., Dietzel, C., ... & Koomen, E. (2008). Comparing the input, output, and validation maps for several models of land change. The Annals of Regional Science, 42(1), 11-37 94. Quyen, N. T. K., Berg, H., Gallardo, W., & Da, C. T. (2017). Stakeholders’ perceptions of ecosystem services and Pangasius catfish farming development along the Hau River in the Mekong Delta, Vietnam. Ecosystem services, 25, 2-14. 95. Reside, A. E., Butt, N., & Adams, V. M. (2017). Adapting systematic conservation planning for climate change. Biodiversity and Conservation, 1-29. 96. Reside, A. E., VanDerWal, J., & Moran, C. (2017). Trade-offs in carbon storage and biodiversity conservation under climate change reveal risk to endemic species. Biological conservation, 207, 9-16. 97. Rey, S., & Koschinsky, J. (2017). A Local Indicator of Multivariate Spatial Association: Extending Geary’s c. 98. Ruckelshaus, M., McKenzie, E., Tallis, H., Guerry, A., Daily, G., Kareiva, P., ... & Bernhardt, J. (2015). Notes from the field: lessons learned from using ecosystem service approaches to inform real-world decisions. Ecological Economics, 115, 11-21. 99. Schaldach, R., Koch, J., der Beek, T. A., Kynast, E., & Flörke, M. (2012). Current and future irrigation water requirements in pan-Europe: An integrated analysis of socio-economic and climate scenarios. Global and Planetary Change, 94, 33-45. 100. Schulp, C. J., Nabuurs, G. J., & Verburg, P. H. (2008). Future carbon sequestration in Europe—effects of land use change. Agriculture, Ecosystems & Environment, 127(3), 251-264. 101. Schuur, E. A. G., McGuire, A. D., Schädel, C., Grosse, G., Harden, J. W., Hayes, D. J., ... & Natali, S. M. (2015). Climate change and the permafrost carbon feedback. Nature, 520(7546), 171. 102. Seidl, R., Schelhaas, M. J., Rammer, W., & Verkerk, P. J. (2014). Increasing forest disturbances in Europe and their impact on carbon storage. Nature climate change, 4(9), 806. 103. Seung-Hwan, Y., Jin-Yong, C., Sang-Hyun, L., Yun-Gyeong, O., & Koun, Y. D. (2013). Climate change impacts on water storage requirements of an agricultural reservoir considering changes in land use and rice growing season in Korea. Agricultural Water Management, 117, 43-54. 104. Shoyama, K., & Yamagata, Y. (2014). Predicting land-use change for biodiversity conservation and climate-change mitigation and its effect on ecosystem services in a watershed in Japan. Ecosystem services, 8, 25-34. 105. Smith, J. E., Heath, L. S., Skog, K. E., & Birdsey, R. A. (2006). Methods for calculating forest ecosystem and harvested carbon with standard estimates for forest types of the United States. 106. Snäll, T., Lehtomäki, J., Arponen, A., Elith, J., & Moilanen, A. (2016). Green infrastructure design based on spatial conservation prioritization and modeling of biodiversity features and ecosystem services. Environmental management, 57(2), 251-256. 107. Stucki, S., Orozco‐terWengel, P., Forester, B. R., Duruz, S., Colli, L., Masembe, C., ... & Taberlet, P. (2017). High performance computation of landscape genomic models including local indicators of spatial association. Molecular ecology resources, 17(5), 1072-1089. 108. Tasser, E., Leitinger, G., & Tappeiner, U. (2017). Climate change versus land-use change—What affects the mountain landscapes more?. Land Use Policy, 60, 60-72. 109. Terrado, M., Sabater, S., Chaplin-Kramer, B., Mandle, L., Ziv, G., & Acuña, V. (2016). Model development for the assessment of terrestrial and aquatic habitat quality in conservation planning. Science of the total environment, 540, 63-70. 110. Tessler, Z. D., Vörösmarty, C. J., Overeem, I., & Syvitski, J. P. (2017). A model of water and sediment balance as determinants of relative sea level rise in contemporary and future deltas. Geomorphology. 111. Tiefelsdorf, M., & Boots, B. (1995). The exact distribution of Moran's I. Environment and Planning A, 27(6), 985-999. 112. Trisurat, Y., Eawpanich, P., & Kalliola, R. (2016). Integrating land use and climate change scenarios and models into assessment of forested watershed services in Southern Thailand. Environmental research, 147, 611-620. 113. Van Vleet, E., Bray, D. B., & Durán, E. (2016). Knowing but not knowing: Systematic conservation planning and community conservation in the Sierra Norte of Oaxaca, Mexico. Land Use Policy, 59, 504-515. 114. Vaz, A. S., Kueffer, C., Kull, C. A., Richardson, D. M., Vicente, J. R., Kühn, I., ... & Honrado, J. P. (2017). Integrating ecosystem services and disservices: insights from plant invasions. Ecosystem services, 23, 94-107. 115. Veldkamp, A., & Fresco, L. O. (1996). CLUE: a conceptual model to study the conversion of land use and its effects. Ecological modelling, 85(2-3), 253-270. 116. Venter, O., Laurance, W. F., Iwamura, T., Wilson, K. A., Fuller, R. A., & Possingham, H. P. (2009). Harnessing carbon payments to protect biodiversity. Science, 326(5958), 1368-1368. 117. Verburg, P. H., & Overmars, K. P. (2009). Combining top-down and bottom-up dynamics in land use modeling: exploring the future of abandoned farmlands in Europe with the Dyna-CLUE model. Landscape ecology, 24(9), 1167. 118. Verburg, P. H., Schot, P. P., Dijst, M. J., & Veldkamp, A. (2004). Land use change modelling: current practice and research priorities. GeoJournal, 61(4), 309-324. 119. Verburg, P. H., Soepboer, W., Veldkamp, A., Limpiada, R., Espaldon, V., & Mastura, S. S. (2002). Modeling the spatial dynamics of regional land use: the CLUE-S model. Environmental management, 30(3), 391-405. 120. Verhagen, W., van Teeffelen, A. J., & Verburg, P. H. (2018). Shifting spatial priorities for ecosystem services in Europe following land use change. Ecological Indicators, 89, 397-410. 121. Vörösmarty, C. J., Green, P., Salisbury, J., & Lammers, R. B. (2000). Global water resources: vulnerability from climate change and population growth. science, 289(5477), 284-288. 122. Wang, H., Zhou, S., Li, X., Liu, H., Chi, D., & Xu, K. (2016). The influence of climate change and human activities on ecosystem service value. Ecological Engineering, 87, 224-239. 123. Wennersten, R., Sun, Q., & Li, H. (2015). The future potential for Carbon Capture and Storage in climate change mitigation–an overview from perspectives of technology, economy and risk. Journal of Cleaner Production, 103, 724-736. 124. Williams, P., Hannah, L. E. E., Andelman, S., Midgley, G. U. Y., Araújo, M. I. G. U. E. L., Hughes, G., ... & Pearson, R. (2005). Planning for climate change: identifying minimum‐dispersal corridors for the Cape proteaceae. Conservation Biology, 19(4), 1063-1074. 125. Wise, M., Calvin, K., Thomson, A., Clarke, L., Bond-Lamberty, B., Sands, R., ... & Edmonds, J. (2009). Implications of limiting CO2 concentrations for land use and energy. Science, 324(5931), 1183-1186. 126. Wu, C. F., Lin, Y. P., Chiang, L. C., & Huang, T. (2014). Assessing highway's impacts on landscape patterns and ecosystem services: a case study in Puli Township, Taiwan. Landscape and Urban Planning, 128, 60-71. 127. You, W., Ji, Z., Wu, L., Deng, X., Huang, D., Chen, B., ... & He, D. (2017). Modeling changes in land use patterns and ecosystem services to explore a potential solution for meeting the management needs of a heritage site at the landscape level. Ecological indicators, 73, 68-78. 128. Yu, P. S., Yang, T. C., & Chou, C. C. (2002). Effects of climate change on evapotranspiration from paddy fields in southern Taiwan. Climatic Change, 54(1-2), 165-179. 129. Zhang, L., Nan, Z., Xu, Y., & Li, S. (2016). Hydrological impacts of land use change and climate variability in the headwater region of the Heihe River Basin, Northwest China. PloS one, 11(6), e0158394. 130. Zhang, L., Nan, Z., Yu, W., & Ge, Y. (2016). Hydrological responses to land-use change scenarios under constant and changed climatic conditions. Environmental management, 57(2), 412-431. 131. Zomlot, Z., Verbeiren, B., Huysmans, M., & Batelaan, O. (2017). Trajectory analysis of land use and land cover maps to improve spatial–temporal patterns, and impact assessment on groundwater recharge. Journal of Hydrology, 554, 558-569. 132. 中華民國國家發展委員會的國家氣候變遷調適行動計畫 133. 何宗翰.2007.氣候變遷影響集水區氮磷輸出之研究 134. 吳佩蓉.2008.整合土地利用模式與水文模式於集水區景觀生態規劃管理 135. 吳振發, & 林裕彬. (2006). 汐止市土地利用時空間變遷模式. 都市與計劃, 33(3), 231-259. 136. 吳振發.2006.土地利用變遷與景觀生態評估方法之建立 137. 周思吟.2015.農場尺度生物多樣性保育區空間優選方法分析與比較-以梅峰農場為例 138. 林子平.2015.土地與氣候變遷情境對流量之影響-以大屯溪流域為例 139. 林昭遠, 劉昌文, & 林鶴儒. (2004). 陳有蘭溪集水區降雨-逕流模式動態分析系統建置之研究. 140. 林雪美, 劉盈劭, & 楊蕙禎. (1997). 賀伯颱風後陳有蘭溪流域主要災區調查. 地理教育, 台灣師大, 23, 25-38. 141. 柯佑霖.2016.水庫集水區土地利用類型對生態系統服務之影響 142. 張祉國.2010.氣候變遷對集水區水量及水質之衝擊評估-以翡翠水庫集水區為例 143. 張庭瑜, 王湘閔, & 林昭遠. (2015). 陳有蘭溪集水區災後山坡地土地可利用限度查定快速評估之研究. Journal of Chinese Soil and Water Conservation, 46(3), 158-170. 144. 張瑞津, 沈淑敏, & 劉盈劭. (2001). 陳有蘭溪四個小流域崩塌與土石流發生頻率之研究. 國立師範大學地理研究報告, 34, 63-83. 145. 陳虹螢.2010.整合土地利用與水文模式於集水區規劃管理之研究-以台北都會區為例 146. 陳珮琦.2017.氣候變遷與土地利用變遷對水文服務的影響-以大屯溪流域為例 147. 陳敏華.2007.應用模擬退火法及景觀指數於集水區土地利用最佳化規劃 148. 陳嬉旻.2015.以營養鹽留存模式探討農業非點源污染減量之研究 149. 陳樹群, 施姵瑜, & 吳俊鋐. (2013). 極端水文事件土砂量對陳有蘭溪河川型態演變影響分析. 中華水土保持學報, 44(4), 311-323. 150. 陳麒如.2017.系統景觀保護規劃法對於生態系統之影響 -以陳有蘭溪為例 151. 曾靖恩.2014.量測與模擬實驗尺度水稻田之氮平衡動態變化 152. 黃建智.2001.流域集水區非點源污染模式之研究 153. 黃俊德.1979.台灣降雨沖蝕指數之研究 154. 黃韜.2012.地景變遷對生態系統服務影響之研究 155. 蕭戎雯.2013.不同單元尺度對土地利用及生態系統服務模擬之影響-以大屯溪流域為例 156. 蕭維德.2013.農場尺度生物多樣性保育系統性優化規劃方法-以梅峰農場為例 | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/70928 | - |
| dc.description.abstract | 全球人口數與人類需求量不斷上升,因此需要砍伐森林成為人類居住地,導致土地利用覆蓋改變,過度使用石化燃料也造成氣候異常,這些變化使生態系的功能減少,因此,本研究目的為整合氣候變遷、土地利用與覆蓋、生態系服務,並評估台灣陳有蘭溪集水區在氣候變遷的影響下,不同的保護區劃設政策對土地利用與生態系服務的影響,其中生態系服務包括:產水量、氮磷營養鹽留存、沉積物留存、碳儲存和棲地品質的變化,進而挑選出適合的保護區劃設方案,提供決策者作為參考依據。
本研究以Integrated valuation of ecosystem services and tradeoffs (InVEST)模式,計算出1999年各項生態系服務與棲地品質,並且利用區域空間相關指標Local Indicators of Spatial Association (LISA)找出生態系服務聚集的熱點,再以Zonation對熱點區域進行系統性保育規劃,並設置四種土地利用情境,情境一:玉山國家公園保護區;情境二:玉山國家公園保護區與陳有蘭溪流域前10%重要網格;情境三:玉山國家公園保護區與陳有蘭溪流域前20%重要網格;情境四:玉山國家公園保護區與陳有蘭溪流域前30%重要網格,以上述不同土地利用情境與Intergovernmental Panel on Climate Change (IPCC)公佈之Fifth Assessment Report (AR5)的Representative Concentration Pathways (RCP)8.5與RCP2.6的5種General Circulation Models (GCMs),置入Conversion of Land Use and its Effects at Small regional extent (CLUE-S)模式模擬2023年的土地利用分佈,再以InVEST進行2023年生態系服務與棲地品質的計算。 以KAPPA值比較2023年與1999年的生態系服務與棲地品質的熱點結果,其表示使用系統性保育規劃後的熱點變化較小,可以有效使重要區域保持在相同區域。若是以總量分析,可以發現情境二、三與四的氮、磷營養鹽留存與沉積物留存會優於情境一。情境二、三、四不管在哪種氣候變遷模式的模擬下都能有效保護生態系服務之熱點與提升生態系服務,而情境二所需之土地的又較其他方案少,因此效率最高,應該被優先選擇,本研究所提供的方法可以有效的評估氣候變遷、土地利用與覆蓋、生態系服務三者之關聯,提供決策者制定政策的參考。 | zh_TW |
| dc.description.abstract | Ecosystem services are closely linked to land use and climate change. Integrating ecosystem services approaches to Systematic Landscape conservation planning (SLCP) facilitate the strategic planning for land-use conservation more effectively. This study evaluates the impacts of different zoning policies and climate change on ecosystem services in the Chen You Lan River watershed in Taiwan. The study focuses on five types of ecosystem services including water yield, sediment retention, nitrogen retention, phosphorus retention, carbon storage, as well as biodiversity, and further, to identify the appropriate area conservation scenario as a reference for decision makers.
This study firstly quantifies those ecosystem services present in 1999 based on meteorological data and land use maps of the same year by Integrated Valuations of Ecosystem Tradeoff (InVEST) model. Second, we use Local Indicators of Spatial Association (LISA) to perform a cluster analysis on the 1999 ecosystem services spatial data and identify these areas as hotspots. Third, we use Zonation to produce priority rank maps that reflect four land use scenarios: 1) Yushan National Park Reserve; 2) Top 10% Zonation conservation prioritization output for Chen You Lan River watershed with Yushan National Park Reserve; 3) Top 20% Zonation conservation prioritization output for Chen You Lan River watershed with Yushan National Park Reserve; and 4) Top 30% Zonation conservation prioritization output for Chen You Lan River watershed with Yushan National Park Reserve. The Conversion of Land Use and its Effects at Small regional extent (CLUE-S) model utilizes these four land use scenarios to simulate the land use in 2023. Accordingly, five Global Climate Models (GCM) with two Intergovernmental Panel on Climate Change Fifth Assessment Report (IPCC AR5) projection scenarios: a RCP8.5 scenario for high emissions and a RCP2.6 scenario for low emissions, are integrated to the developed 2023 land use map created, to further, quantify the 2023 ecosystem services. Finally, 2023 ecosystem services for four land use scenarios under different climate change conditions are analyzed, the recommendations are raised based on kappa statistics and the study area’s actual total amount values. A comparison of kappa statistical values for 1999 and 2023 hotspots indicate that when using Zonation, it is more efficient to prioritize conservation areas that are ecosystem services hotspots. Study findings further indicate that for ecosystem services in 2023, scenarios 2, 3 and 4 works better than scenario 1 in nitrogen retention, phosphorous retention, and sediment retention if we use the study area’s actual total amount values to compare results. Regardless of which GCM is employed, scenarios 2, 3 and 4 are able to conserve ecosystem services hotspots and the study area’s actual total amount values. Furthermore, since scenario 2 also requires less land use than other scenarios and so has the highest efficiency, it is recommended for strategic land use conservation planning considerations for the study area. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-17T04:44:17Z (GMT). No. of bitstreams: 1 ntu-107-R05622025-1.pdf: 18293919 bytes, checksum: 3a5916d09aab50329fe48fa985fb216e (MD5) Previous issue date: 2018 | en |
| dc.description.tableofcontents | 誌謝 I
摘要 II Abstract IV 目錄 VI 圖目錄 IX 表目錄 XIV 1 第一章 前言 1 1.1 研究動機 1 1.2 研究目的 2 1.3 研究架構 3 2 第二章 文獻回顧 5 2.1 氣候變遷 5 2.2 土地利用與土地覆蓋 8 2.3 生態系服務 10 2.4 區域空間相關量測指標 15 2.5 系統性保育規劃 17 3 第三章 研究方法 20 3.1 研究區域 20 3.2 氣候變遷資料 22 3.2.1 模式選取 22 3.2.2 地理統計理論與模擬 23 3.3 土地利用與覆蓋 26 3.3.1 土地利用需求 27 3.3.2 空間政策 28 3.3.3 轉移彈性與轉移矩陣 28 3.3.4 區位特性 29 3.3.5 空間分配 31 3.4 生態系服務 33 3.4.1 產水量 33 3.4.2 氮、磷營養鹽留存 34 3.4.3 沉積物留存 36 3.4.4 碳儲存 37 3.4.5 棲地品質 38 3.5 區域空間相關量測指標 42 3.6 系統性保育規劃 44 4 第四章 研究結果 47 4.1 現況分析 47 4.1.1 氣象資料 47 4.1.2 土地利用與覆蓋 52 4.1.3 生態系服務 54 4.1.4 區域空間相關量測指標 60 4.1.5 系統性保育規劃 61 4.2 未來情境模擬結果 63 4.2.1 氣候變遷氣象資料 63 4.2.2 土地利用與覆蓋 68 4.2.3 氣候變遷模式下各情境之生態系服務 78 4.2.4 氣候變遷模式下各情境與1999年生態系服務之差異 105 4.2.5 氣候變遷模式下各情境之區域空間相關量測指標 127 5 第五章 結果討論 151 5.1 氣候變遷 151 5.2 土地利用與覆蓋 152 5.3 生態系服務 154 5.3.1 產水量 154 5.3.2 營養鹽留存 155 5.3.3 沉積物留存 159 5.3.4 碳儲存 161 5.3.5 棲地品質 162 5.4 系統性保育規劃 163 6 第六章 結論與建議 166 7 第七章 參考文獻 169 | |
| dc.language.iso | zh-TW | |
| dc.subject | 生態系服務 | zh_TW |
| dc.subject | 氣候變遷 | zh_TW |
| dc.subject | 系統性保育規劃 | zh_TW |
| dc.subject | 區域空間相關量測指標 | zh_TW |
| dc.subject | 土地利用與覆蓋 | zh_TW |
| dc.subject | Systematic conservation planning | en |
| dc.subject | Climate change | en |
| dc.subject | Ecosystem service | en |
| dc.subject | Land useLand cover | en |
| dc.subject | LISA | en |
| dc.title | 以系統性保育規劃法評估氣候變遷對生態系服務的影響-以陳有蘭溪流域為例 | zh_TW |
| dc.title | Systematic conservation approach in assessment of climate change impacts on Ecosystem services-Chen You Lan River watershed | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 106-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 范致豪,江莉琦,王?潔 | |
| dc.subject.keyword | 氣候變遷,生態系服務,土地利用與覆蓋,區域空間相關量測指標,系統性保育規劃, | zh_TW |
| dc.subject.keyword | Climate change,Ecosystem service,Land useLand cover,LISA,Systematic conservation planning, | en |
| dc.relation.page | 187 | |
| dc.identifier.doi | 10.6342/NTU201802432 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2018-08-03 | |
| dc.contributor.author-college | 生物資源暨農學院 | zh_TW |
| dc.contributor.author-dept | 生物環境系統工程學研究所 | zh_TW |
| 顯示於系所單位: | 生物環境系統工程學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-107-1.pdf 未授權公開取用 | 17.87 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
