請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/70917完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 胡植慶(Jyr-Ching Hu) | |
| dc.contributor.author | Adhika Catra Pradhana | en |
| dc.contributor.author | 卜艾西 | zh_TW |
| dc.date.accessioned | 2021-06-17T04:43:44Z | - |
| dc.date.available | 2018-08-09 | |
| dc.date.copyright | 2018-08-09 | |
| dc.date.issued | 2018 | |
| dc.date.submitted | 2018-08-03 | |
| dc.identifier.citation | Alvis-Isidro, R. R., Solaña, R. R., D’Amore, F., Nuti, S., & Gonfiantini, R. (1993). Hydrology of the Greater Tongonan geothermal system, Philippines, as deduced from geochemical and isotopic data. Geothermics, 22(5–6), 435–449. https://doi.org/10.1016/0375-6505(93)90030-Q
Aurelio, M. A., Taguibao, K. J. L., Vargas, E., Palattao, M. V., Reyes, R., Nohay, C., Singayan, A. (2013). Geological criteria for site selection of an LILW radioactive waste repository in the Philippines. 15th ASME 2013 International Conference on Environmental Remediation and Radioactive Waste Management, (September), 1–9. https://doi.org/10.1115/ICEM2013-96127 Aurelio, M., Barrierj, E., Gaulon, R., & Rangin, C. (1997). Deformation and stress states along the central segmentof the Philippine Fault: implications to wrench fault tectonics. Journal of Asian Earth Sciences, 15(2–3), 107–119. https://doi.org/10.1016/S0743-9547(97)00001-9 Barbour, A.J., Evans, E. L., Hickman, S. H., Eneva, M. (2016). Sources of Subsidence at the Salton Sea Geothermal Field. E-Print Network, (2012), 1–12. Retrieved from https://pangea.stanford.edu/ ERE/ db/IGAstandard / record_detail.php? id=26381 Bautista, M. L. P. & Oike, K. (2000). Estimation of the magnitudes and epicenters of Philippine historical earthquakes. Tectonophysics, 137-169. Benito, F. A., Ogena, M. S., & Stimac, J. A. (2005). Geothermal Energy Development in the Philippines: Country Update. World Geothermal Congress, (April), 24–29. Besana, G. M., & Ando, M. (2005). The central Philippine Fault Zone: Location of great earthquakes, slow events, and creep activity. Earth, Planets and Space, 57(10), 987–994. https://doi.org/10.1186/BF03351877 Bromley, C. J., Currie, S., Jolly, S., & Mannington, W. (2015). Subsidence: an Update on New Zealand Geothermal Deformation Observations and Mechanisms. World Geothermal Congress, 1(April), 9. CRISP. (2001). Microwave Remote Sensing. National University of Singapore. Retrieved from https://crisp.nus.edu.sg/~research/tutorial/mw.htm Crosetto, M., Arnaud, A., & Duro, J. (2003). Deformation monitoring using remotely sensed radar Interferometric data. Proceedings of the Federation of Surveyors Symposium on Deformation Measurements, 1–8. Dacillo, D. B., Colo, M. H. B., Andrino, R. P., Alcober, E. H., Xavier, F., Ana, M. S., & Malate, R. C. M. (2010). 2010 Dacilo Tongonan Geothermal Field Conquering the Challenges of 25 Years of Production.pdf, (April), 25–29. Department of Energy. (2016). Philippine Energy Plan 2016-2030. Department of Energy, 102. Retrieved from https: //www.doe.gov.ph/sites/default/files/pdf/pep /2016-2030_pep.pdf Didier, M., Rossi, M., Carmona, C., Adragna, F., Peltzer, G., Feigl, K., & Rabaute, T. (1993). The displacement field of the Landers earthquake mapped by radar interferometry. Nature, 364(6433), 138–142. https://doi.org/10.1038/364138a0 Duquesnoy, T., Barrier, E., Kasser, M., Aurelio, M., Gaulon, R., Punongbayan, R. S., & Rangin, C. (1994). Detection of creep along the Philippine Fault: First results of geodetic measurements on Leyte Island, central Philippine. Geophysical Research Letters, 21(11), 975–978. https://doi.org/10.1029/94GL00640 Falk, A. F., Galloway, D. L., Bell, J. W., Zebker, H. A., & Laczniak, R. J. (1999). Sensing the ups and downs of Las Vegas: InSAR reveals structural control of land subsidence and aquifer-system deformation. Geology, 27(6), 483–486. https://doi.org/10.1130/0091-7613(1999)027<0483:STUADO>2.3.CO;2 Ferretti, A., Prati, C., & Rocca, F. (2001). Permanent Scatters in SAR Interferometry. IEEE Transactions on Geoscience and Remote Sensing, 39(1), 8–20. https://doi.org/10.1109/36.898661 Galloway, D.L., Jones, D.R., and Ingebritsen, S.E., editors. (1999). Land subsidence in the United States: U.S. Geological Survey Circular 1182 Gervasio, F. C. (1967). Age and nature of orogenesis of the philippines. Tectonophysics, 4(4–6), 379–402. https://doi.org/10.1016/0040-1951(67)90006-6 Green, J.H. (1964). The effect of artesian-pressure decline on confined aquifer systems and its relation to land subsidence: U.S. Geological Survey Water Supply Paper 1779-T, p. T1–T11. Hanssen, R. F. (2001). Radar Interferometry: Data Interpretation and Error Analysis. Kluwer Academic, Dordrecht. Hillis, R. R., Coblentz, D. D., Zhou, S., Richardson, R. M., & Sandiford, M. (1998). Topography, boundary forces, and the Indo-Australian intraplate stress field. Journal of Geophysical Research: Solid Earth, 103(B1), 919–931. https://doi.org/10.1029/97JB02381 Hooper, A., Segall, P., & Zebker, H. (2007). Persistent scatterer interferometric synthetic aperture radar for crustal deformation analysis, with application to Volcán Alcedo, Galápagos. Journal of Geophysical Research: Solid Earth, 112(7), 1–21. https://doi.org/10.1029/2006JB004763 Hooper, A., Zebker, H., Segall, P., & Kampes, B. (2004). A new method for measuring deformation on volcanoes and other natural terrains using InSAR persistent scatterers. Geophysical Research Letters, 31(23), 1–5. https://doi.org/10.1029/2004GL021737 Hsieh, C.-S. (2006). Detecting terrain deformation with radar interferometry, Ph.D. thesis, National Chiao Tung University., Taiwan IEA. (2010). Renewable Energy Essentials: Geothermal. Renewable Energy, 1–4. Retrieved from https: //www.iea.org/publications/freepublications/publication/ renewable-energy-essentials-geothermal.html IEA. (2013). Experience in Energy Development in The Philippines: The EDC Leyte Geothermal Field. IEA-GIA Workshop. Sept 21, 2013. Kampes, B. M. (2005). Displacement parameter estimation using permanent scatterer interferometry, Ph.D. thesis, Delft University of Technology., Delft, Netherland. Leake, S.A. (2010). Human impacts on the landscape—land subsidence from ground-water pumping, in Impact of climate change and land use in the southwestern United States: U.S. Geological Survey: Online, http:// eochange.er.usgs.gov/sw/changes/anthropogenic/subside. Leake, S. A. (2004). Land Subsidence from Groundwater Pumping. Retrieved July 2018, from U.S.G.S: http: //geochange.er.usgs.gov/sw/changes/anthropogenic/subside/ Lowe, M. (2012). Subsidence in Sedimentary Basins Due To Groundwater Withdrawal for Geothermal Energy Development Withdrawal for Geothermal. Open-File Report 601 Utah Geological Survey, 3. Lyons, S., & Sandwell, D. (2003). Fault creep along the southern San Andreas from interferometric synthetic aperture radar, permanent scatterers, and stacking. Journal of Geophysical Research: Solid Earth, 108(B1), 1–24. https://doi.org/10.1029/2002JB001831 MGB. (2004). Geology of the Philippines, volume 1. Mines and Geosciences Bureau Mccandless, S. W. W., & Jackson, C. R. (2004). Chapter 1 . Principles of Synthetic Aperture Radar. SAR Marine User’s Manual, 1–23. Murauchi, S., Ludwig, W. J., Den, N., Hotta, H., Asanuma, T., Yoshii, T., … Hagiwara, K. (1973). Structure of the Sulu Sea and the Celebes Sea. Journal of Geophysical Research, 78(17), 3437. https://doi.org/10.1029/JB078i017p03437 Perez, J.S., H. Tsutsumi, M. Cahulogan,. Cabanlit, M. Abigania, … T. Nakata, (2015). Fault Distribution, Segmentation and Earthquake Generation Potential of the Philippine Fault in Eastern Mindanao, Philippines. J. Disaster Res., Vol.10, No.1, pp. 74-82. Poland, J.F. (1981). Subsidence in United States due to ground-water withdrawal: Journal of Irrigation and Drainage Division, v. 107, p. 115–135. Prioul, R., Dorbath, C., Dorbath, L., Cornet, F. H., Ogena, M., & Ramos, E. (2000). An induced seismicity experiment across a creeping segment of the Philippine Fault. Journal of Geophysical Research, 105(June 10, 2000), 13595–13612. Ranken, B., Cardwell, R. K., & Karig, D. E. (1984). Kinematics of Philippine Sea plate. Tectonics, 3(5), 555–575. Tsutsumi, H., Fukushima, Y., Perez, J. S., & Lienkaemper, J. J. (2013). Rate and extent of fault creep along the central Philippine fault on Leyte Island. Uribe, M. H. C., Dacillo, D. B., Dacoag, L. M., Andrino, R. P. J., & Alcober, E. H. (2015). 30 Years of Tongonan-1 (Leyte, Philippine ) Sustained Production. World Geothermal Congress 2015, 1(April), 1–6. Werner, C., Wegmuller, U., Strozzi, T., & Wiesmann, A. (2003). Interferometric point target analysis for deformation mapping. IGARSS 2003. 2003 IEEE International Geoscience and Remote Sensing Symposium. Proceedings (IEEE Cat. No.03CH37477), 7(1), 4362–4364. https://doi.org/10.1109/IGARSS.2003.1295516 Yang, Y. H., Tsai, M. C., Hu, J. C., Aurelio, M. A., Hashimoto, M., Escudero, J. A. P., … Chen, Q. (2018). Coseismic Slip Deficit of the 2017 Mw 6.5 Ormoc Earthquake That Occurred Along a Creeping Segment and Geothermal Field of the Philippine Fault. Geophysical Research Letters, 45(6), 2659–2668. https://doi.org/10.1002/2017GL076417 Zebker, H. A., Rosen, P. A., Goldstein, R. M., Gabriel, A. K., & Werner, C. L. (1994). On the derivation of coseismic displacement fields using differential radar interferometry: The Landers eathquake. Journal of Geophysical Research, 99(B10), 19617–19634. Zebker, H. A., & Villasenor, J. (1992). Decorrelation in interferometric radar echoes. IEEE Transactions on Geoscience and Remote Sensing, 30(5), 950–959. https://doi.org/10.1109/36.175330 | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/70917 | - |
| dc.description.abstract | 菲律賓群島自成立以來,一直在經歷複雜的地質過程,如俯衝,碰撞和主要的走滑斷層。具體而言,菲律賓構造板塊在菲律賓東部的歐亞板塊下俯衝。這些板塊在菲律賓南部的摩盧卡斯海相撞,主要的走滑斷層發生在菲律賓斷裂帶(PFZ)群島的中心。菲律賓位於太平洋火環西部,經歷頻繁的地震和火山活動。沿著活躍的構造塊體廣泛的火山活動為菲律賓提供了高熱流,可以用作地熱資源的替代能源。這符合菲律賓政府想要增加可再生能源,特別是地熱能的能力的想法。截至2015年12月,菲律賓處理的裝機容量為1,906兆瓦,這使得菲律賓聲稱它在安裝世界地熱能力方面位居全國第二。到2030年,他們希望將地熱容量增加約1,371兆瓦。在菲律賓中部,雷伊泰中部高地的雷伊泰地熱田(LGF)仍然是該國主要的地熱能源生產國。它總共產生約710兆瓦的電力,佔菲律賓總裝機容量的37%左右。Tongonan地熱田(TGF)是菲律賓最古老和最大的地熱發電廠之一,位於PFZ區附近的Leyte島。為了達到地熱能力目標,需要增加勘探和開採。不僅如此,我們還必須維護和監控菲律賓已有的發電廠。在這種情況下,有必要對土地移位的危險採取預防措施,包括沉降和隆起。在用PS-InSAR方法分析後,我們發現在TGF周圍區域經歷了沉降,特別是在生產井周圍發生了嚴重的沉降,高達37.5 mm / yr。這種下沉是由於過多的地下水開採造成的,這可能會損壞發電廠本身。 | zh_TW |
| dc.description.abstract | The Philippines Archipelago has been undergoing complex geologic processes such an subduction, collision and major strike-slip faulting since it was formed. Specifically, the Philippines Tectonic Plate subducted under the Eurasian Plate on the eastern part of The Philippines. The plates collided in the Moluccas Sea, in the southern part of the Philippines and major strike-slip faulting took place at the center of the archipelago, the Philippines Fault Zone (PFZ). Situated in the western part of the Pacific Ring of Fire, the Philippines experiences frequent seismic and volcanic activity. The widespread volcanic activity along the active tectonic blocks provides the Philippines with high heat flow that can be used as an alternative source of energy from the geothermal resources. This is in line with the thoughts of the Government of the Philippines who want to add the capacity of the renewable energy resources, especially geothermal energy. As of December 2015, the Philippines processes 1,906 MW installed capacity which sustains the Philippines claim that it is ranked second among the nations in the installation of the world’s geothermal capacity. By 2030 they want to increase the geothermal capacity by approximately 1,371 MW. In Central Philippines, the Leyte Geothermal Field (LGF) in the central highlands of Leyte remains as the leading producer of geothermal energy in the country. It produces a total of around 710 megawatts and provides about 37% of the total installed geothermal capacity in the Philippines. Tongonan Geothermal Field (TGF) is one of the oldest and largest geothermal power plants fields in the Philippines, placed in Leyte Island near the PFZ zone. In order to reach the geothermal capacity target, its need increase the exploration and the exploitation. Not only that we also have to maintain and monitor the power plant which already exists in the Philippines. In this case it is necessary to take a preventive action about the danger of land displacement both subsidence and uplift. After analyzing with PS-InSAR method, we found in the area around TGF experiencing subsidence especially a severe subsidence happened around the production well area with up to 37.5 mm/yr LOS displacement. This subsidence is caused by excessive groundwater extraction which can damage the power plant itself. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-17T04:43:44Z (GMT). No. of bitstreams: 1 ntu-107-R05224217-1.pdf: 4175945 bytes, checksum: 8baa3611da93b2c1f4722bf7bcdf953d (MD5) Previous issue date: 2018 | en |
| dc.description.tableofcontents | Title Page = i
Acknowledgement = ii Abstract (Chinese) = iii Abstract = iv Content = vi List of Figures = viii List of Tables = x Chapter 1 Introduction = 1 1.1. Motivation = 1 1.2. Outline = 6 Chapter 2 The Philippines Geological Setting = 7 2.1. The Philippines Archipelago Tectonic Setting = 7 2.2. Geological Background of Study Area = 12 2.3. Tongonan Geothermal Field = 15 Chapter 3 Synthetic Aperture Radar Interferometry = 21 3.1. Synthetic Aperture Radar = 21 3.2. InSAR = 24 3.3. D-InSAR = 26 3.4. PS-InSAR = 27 3.4.1. Interferogram Formation = 29 3.4.2. Master Image Selection = 30 3.4.3. Phase Stability Estimation = 30 3.4.3.1. Amplitude Analysis = 30 3.4.3.2. Phase Analysis = 31 3.4.4. PS Selection = 33 3.4.5. Phase Unwrapping = 34 Chapter 4 Results And Analysis = 36 4.1. Dataset = 36 4.2. Results = 39 4.2.1. Result by Persistent Scatterer Approach = 39 4.3. Discussion = 46 4.3.1. Comparison with Water Extraction Rate = 46 Chapter 5 Conclusion And Recommendation = 50 5.1. Conclusion = 50 5.2. Recommendation = 50 References = 51 | |
| dc.language.iso | en | |
| dc.subject | 地熱 | zh_TW |
| dc.subject | Tongonan | zh_TW |
| dc.subject | PS-InSAR | zh_TW |
| dc.subject | 沉降 | zh_TW |
| dc.subject | Tongonan | en |
| dc.subject | Geothermal | en |
| dc.subject | PS-InSAR | en |
| dc.subject | Subsidence | en |
| dc.title | 利用SAR干涉測量研究菲律賓雷伊泰Tongonan地熱場抽提地熱水引起的地面沉降 | zh_TW |
| dc.title | Study of Land Subsidence Induced by Water Extraction
Using SAR Interferometry in Tongonan Geothermal Field Leyte Island Philippines | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 106-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 朱傚祖(Hao-Tsu Chu),謝嘉聲(Chia-Sheng Hsieh) | |
| dc.subject.keyword | Tongonan,地熱,PS-InSAR,沉降, | zh_TW |
| dc.subject.keyword | Tongonan,Geothermal,PS-InSAR,Subsidence, | en |
| dc.relation.page | 55 | |
| dc.identifier.doi | 10.6342/NTU201802467 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2018-08-03 | |
| dc.contributor.author-college | 理學院 | zh_TW |
| dc.contributor.author-dept | 地質科學研究所 | zh_TW |
| 顯示於系所單位: | 地質科學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-107-1.pdf 未授權公開取用 | 4.08 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
