Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 機械工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/70903
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor范士岡(Shih-Kang Fan)
dc.contributor.authorShaw-Yuan Fangen
dc.contributor.author方劭元zh_TW
dc.date.accessioned2021-06-17T04:43:08Z-
dc.date.available2023-08-07
dc.date.copyright2018-08-07
dc.date.issued2018
dc.date.submitted2018-08-03
dc.identifier.citation[1] L. L. Shui, R. A. Hayes, M. L. Jin, X. Zhang, P. F. Bai, A. v. d. Berg, et al., 'Microfluidics for electronic paper-like displays,' Lab on a Chip, vol. 14, pp. 2374–2384, Mar. 2014.
[2] M. R. Fernández, E. Z. Casanova, and I. G. Alonso, 'Review of Display Technologies Focusing on Power Consumption,' Sustainability, vol. 7, pp. 10854-10875, Aug. 2015.
[3] P. F. Bai, R. A. Hayes, M. Jin, L. Shui, Z. C. Yi, L. Wang, et al., 'Review of Paper-Like Display Technologies,' Progress In Electromagnetics Research, vol. 147, pp. 95–116, Jun. 2014.
[4] P. Gravesen, J. Branebjerg, and O. S. Jensen, 'Microfluidics-a review,' Journal of Micromechanics and Microengineering, vol. 3, pp. 168-182, 1993.
[5] D. J. Beebe, G. A.Mensing, and G. M.Walker, 'Physics and applications of microfluidics in biology,' The Annual Review of Biomedical Engineering, vol. 4, pp. 261-86, Mar. 2002.
[6] I. Rodríguez-Ruiz, T. N. Ackermann, X. Muñoz-Berbel, and A. Llobera, 'Photonic Lab-on-a-Chip: Integration of Optical Spectroscopy in Microfluidic Systems,' Analytical Chemistry vol. 88, pp. 6630-6637, May 2016.
[7] S.-K. Fang and F.-M. Wang, 'Multiphase optofluidics on an electro-microfluidic platform powered by electrowetting and dielectrophoresis,' Lab on a Chip, vol. 14, pp. 2728–2738, Apr. 2014.
[8] K. Zhou, J. Heikenfeld, K. A. Dean, E. M. Howard, and M. R. Johnson, 'A full description of a simple and scalable fabrication process for electrowetting displays,' Journal of Micromechanics and Microengineering, vol. 19, p. 065029, May 2009.
[9] B. Comiskey, J. D. Albert, H. Yoshizawa, and J. Jacobson, 'An electrophoretic ink for all-printed reflective electronic displays,' Nature vol. 394. 6690, pp. 253-255, Jul. 1998.
[10] R. A. Hayes and B. J. Feenstra, 'Video-speed electronic paper based on electrowetting,' Nature vol. 425, pp. 383-385, Aug. 2003.
[11] H. You and A. J. Steckl, 'Three-color electrowetting display device for electronic paper,' Applied Physics Letters, vol. 97, p. 023514, Jul. 2010.
[12] A. Steckl, D.-Y. Kim, and H. You. Electrowetting: a flexible electronic-paper technology. [Online].
[13] D. Y. Kim and A. J. Steckl, 'Complementary Electrowetting Devices on Plasma-Treated Fluoropolymer Surfaces,' Langmuir, vol. 26, pp. 9474-9483, Mar. 2010.
[14] J. Heikenfeld, K. Zhou, E. Kreit, B. Raj, S. Yang, B. Sun, et al., 'Electrofluidic displays using Young–Laplace transposition of brilliant pigment dispersions,' Nature Photonics, vol. 3, pp. 292-296, April. 2009.
[15] M. Hagedon, S. Yang, A. Russell, and J. Heikenfeld, 'Bright e-Paper by transport of ink through a white electrofluidic imaging film,' Nature Communications, vol. 3:1173, Nov. 2012.
[16] Y.-H. Lu and C.-H. Tien, 'Principal Component Analysis of Multi-Pigment Scenario in Full-Color Electrophoretic Display,' Journal of Display Technology vol. 9, pp. 807-812, Oct. 2013.
[17] R. C. Liang, J. Hou, H. M. Zang, J. Chung, and S. Tseng, 'Microcup® displays: Electronic paper by roll-to-roll manufacturing processes,' Journal of the Society for Information Display, vol. 11, pp. 621-628, Dec. 2003.
[18] C.-P. Chiu, P.-W. Huang, S.-K. Fan, J.-H. Wei, and W. Hsu, 'Reflective Electronic Paper Display Utilizing Electric Polarized Particle Chains,' in SID Symposium, Long Beach, CA, USA, 2007, pp. 1466-1469.
[19] S.-K. Fan, C.-P. Chiu, C.-H. Hsu, S.-C. Chen, L.-L. Huang, Y.-H. Lin, et al., 'Particle chain display – an optofluidic electronic paper ' Lab on a Chip, vol. 12, pp. 4870–4876, Sep. 2012.
[20] T. Y. Lee, T. M. Choi, T. S. Shim, R. A. M. Frijnsad, and S.-H. Kim, 'Microfluidic production of multiple emulsions and functional microcapsules,' Lab on a Chip, vol. 16, pp. 3415-3440, Jul. 2016
[21] J. Bibette, F. L. Calderon, and P. Poulin, 'Emulsions: basic principles,' Reports on Progress in Physics, vol. 62, pp. 969-1033, Feb. 1999.
[22] T. F. Tadros, Emulsion Formation and Stability. Hoboken: John Wiley & Sons., 2013.
[23] D. Myers, Surfactant science and technology. Hoboken: John Wiley & Sons., 2005.
[24] M. E. Aulton, Pharmaceutics: The science of dosage form design. Churchill livingstone. London: Churchill Livingstone, 2002.
[25] W. Ramsden, 'Separation of Solids in the Surface-layers of Solutions and 'Suspensions',' Proceedings of the Royal Society of London, vol. 72, p. 156, Jan. 1903.
[26] S. U. Pickering, 'Emulsions,' Journal of the Chemical Society, vol. 91, p. 2001, 1907.
[27] S. A. F. Bon, 'CHAPTER 1 The Phenomenon of Pickering Stabilization: A Basic Introduction,' in Particle-Stabilized Emulsions and Colloids: Formation and Applications, ed London: The Royal Society of Chemistry, 2015, pp. 1-7.
[28] J. Marto, A. Ascenso, S. Simoes, A. J. Almeida, and H. M. Ribeiro, 'Pickering emulsions: challenges and opportunities in topical delivery,' Expert Opinion on Drug Delivery, vol. 13, pp. 1093-1107, Aug. 2016.
[29] Y. Xia and G. M. Whitesides, 'Soft Lithography,' Annual review of materials science, vol. 28, pp. 153-184, Aug. 1998.
[30] B. Zheng, C. J. Gerdts, and R. F. Ismagilov, 'Using nanoliter plugs in microfluidics to facilitate and understand protein crystallization. Current opinion in structural biology,' Current Opinion in Structural Biology, vol. 15, pp. 548–555, Sep. 2005.
[31] H. Song, D. L. Chen, and R. F. Ismagilov, 'Reactions in Droplets in Microfluidic Channels,' Angewandte Chemie, vol. 45, pp. 7336-7356, Jul. 2006.
[32] I. Papautsky, T. Ameel, and A. B. Frazier, 'A Review of Laminar Single-phase Flow in Microchannels,' presented at the Proceedings of 2001 ASME International Mechanical Engineering Congress and Exposion, New York, 2001.
[33] R. S. Boogar, R. Gheshlaghi, and M. A. Mahdavi, 'The effects of viscosity, surface tension, and flow rate on gasoil-water flow pattern in microchannels”, Korean Journel of Chemical Engineering,' Korean Journel of Chemical Engineering, vol. 30, pp. 45-49, Jul. 2013.
[34] Z. Nie, W. Li, M. Seo, S. Xu, and E. Kumacheva, 'Janus and Ternary Particles Generated by Microfluidic Synthesis: Design, Synthesis, and Self-Assembly,' Journal of the American Chemical Society, vol. 128, pp. 9408-9412, May 2006.
[35] L. Shui, A. v. d. Berg, and J. C. T. Eijkel, 'Interfacial tension controlled W/O and O/W 2-phase flows in microchannel,' Lab on a Chip, vol. 9, pp. 795-801, Dec. 2009.
[36] D. J. Collins, A. Neild, A. Q. Liu, and Y. Ai, 'The poisson distribution and beyond: methods for microfluidic droplet production and single cell encapsulation,' Lab on a Chip, vol. 15, pp. 3439-3459, Jul. 2015.
[37] T. Thorsen, R. W. Roberts, F. H. Arnold, and S. R. Quake, 'Dynamic Pattern Formation in a Vesicle-Generating Microfluidic Device,' Physical review letters, vol. 86, p. 4163, Apr. 2001.
[38] M. Azarmanesh, M. Farhadi, and P. Azizian, 'Double emulsions with controlled morphology by microgel scaffolding,' Physics of Fluids vol. 28, p. 032005, Jun. 2016.
[39] T. Nisisako, T. Torii, T. Takahashi, and Y. Takizawa, 'Synthesis of Monodisperse Bicolored Janus Particles with Electrical Anisotropy Using a Microfluidic Co-Flow System,' Advanced Materials, vol. 18, pp. 1152–1156, Jan. 2006.
[40] J. Tan, J. H. Xu, S. W. Li, and G. S. Luo, 'Drop dispenser in a cross-junction microfluidic device: Scaling and mechanism of break-up,' Chemical Engineering Journal, vol. 136, pp. 306–311, Apr. 2008.
[41] A. S. Utada, E. Lorenceau, D. R. Link, P. D. Kaptan, H. A. Stone, and D. A. Weitz, 'Monodisperse double emulsions generated from a microcapillary device,' Science, vol. 308, pp. 537-541, Apr. 2005.
[42] H. Lee, C.-H. Choi, A. Abbaspourrad, C. s. Wesner, M.Caggioni, T. Zhu, et al., 'Fluorocarbon Oil Reinforced Triple Emulsion Drops,' Advanced Materials, vol. 28, pp. 8425–8430, Aug. 2016.
[43] M. D. Menech, P. Garstecki, F. Jousse, and H. A. Stone, 'Transition from squeezing to dripping in a microfluidic T-shaped junction. journal of fluid mechanics,' Journal of Fluid Mechanics, vol. 595, pp. 141-161, Sep. 2008.
[44] Z. Mohamed-Kassim and E. K. Longmire, 'Drop coalescence through a liquid/liquid interface,' Physics of Fluids, vol. 16, p. 2170, 2004.
[45] Y. T. Hu, D. J. Pine, and L. G. Leal, 'Drop deformation, breakup, and coalescence with compatibilizer,' Physics of Fluids, vol. 12, pp. 484-489, Nov. 2000.
[46] B. Berge, 'Electrocapillarity and wetting of insulator films by water.,' Comptes Rendus de l'Academie des Sciences Series II, vol. 317, pp. 157-163, 1993.
[47] D. Orejon, K. Sefiane, and M. E. R. Shanahan, 'Young-Lippmann equation revisited for nano-suspensions,' Applied Physics Letters, vol. 102, p. 201601, May 2013.
[48] H. A. Pohl, Dielectrophoresis: The Behavior of Neutral Matter in Nonuniform Electric Fields. London: Cambridge University Press, 1987.
[49] H. A. Pohl, 'The Motion and Precipitation of Suspensoids in Divergent Electric Fields,' Journal of Applied Physics, vol. 22, pp. 869-871, Jul. 1951.
[50] G. Medoro, R. Guerrieri, N. Manaresi, C. Nastruzzi, and R. Gambari, 'Lab on a Chip for Live-Cell Manipulation,' IEEE Design & Test of Computers, vol. 24, pp. 26-36, Jun.-Feb. 2007.
[51] T. B. Jones, Electromechanics of Particles. London: Cambridge University Press, 1995.
[52] B. Bertolotti, H. Messaoudi, L. Chikh, C. Vancaeyzeele, S. Alfonsi, and O. Fichet, 'Stability in alkaline aqueous electrolyte of air electrode protected with fluorinated interpenetrating polymer network membrane,' Journal of Power Sources, vol. 274, pp. 488-495, Oct. 2015.
[53] C. Barner-Kowollik, T. P. Davis, and M. H. Stenzel, 'Probing mechanistic features of conventional, catalytic and living free radical polymerizations using soft ionization mass spectrometric techniques,' Polymer vol. 45, pp. 7791–7805, Sep. 2004.
[54] F. M. Wissera, B. Schummb, G. Mondina, J. Grothea, and S. Kaskela, 'Precursor strategies for metallic nano- and micropatterns using soft lithography ' Journal of Materials Chemistry C, vol. 3, pp. 2717-2731 Feb. 2015.
[55] M. Mamone, T. Milcent, and B. Crousse, 'Reactivity of Carbon Dioxide in Hydrofluoroethers: Facile Access to Cyclic Carbonates,' Chemical Communications, vol. 51, pp. 12736-12739, Jan. 2015.
[56] A. Pitto-Barry and N. P. E. Barry, 'Pluronic® block-copolymers in medicine: from chemical and biological versatility to rationalisation and clinical advances,' Polymer Chemistry, vol. 5, pp. 3291-3297, May 2014.
[57] F. Valenzuela, C. Salinas, C. Basualto, J. Sapag-Hagar, and C. Tapia, 'Influce of Nonionic Surfactant Compound on Coupled Transport of Copper(II) through a Liquid Membrane,' Journal of the Chilean Chemical Society, vol. 48, pp. 79-84, Jun. 2003.
[58] C. Holtze, A. C. Rowat, J. J. Agresti, J. B. Hutchison, F. E. Angilè, C. H. J. Schmitz, et al., 'Biocompatible surfactants for water-in-fluorocarbon emulsions,' Lab on a Chip, vol. 8, pp. 1632–1639, Jul. 2008.
[59] H. F. Chan, Y. Zhang, Y.-P. Ho, Y.-L. Chiu, Y. Jung, and K. W. Leong, 'Rapid formation of multicellular spheroids in double-emulsion droplets with controllable microenvironment,' Scientific reports vol. 3, p. 3462, Dec. 2013.
[60] K. D. Sarma, D. Ray, and A. Antony, 'Improved sensitivity of trypan blue dye exclusion assay with Ni2+ or Co2+ salts,' Cytotechnology, vol. 32, pp. 93–95, Jul. 2000.
[61] M. Pan, L. Rosenfeld, M. Kim, M. Xu, E. Lin, R. Derda, et al., 'Fluorinated Pickering Emulsions Impede Interfacial Transport and Form Rigid Interface for the Growth of Anchorage-Dependent Cells,' ACS Applied Materials & Interfaces, vol. 6, pp. 21446-21453, Oct. 2014.
[62] Y. Song, Y. Jeong, T. Kwon, D. Lee, D. Y. Oh, T.-J. Park, et al., 'Liquid-capped encoded microcapsules for multiplex assays,' Lab on a Chip, vol. 17, pp. 429-437, Dec. 2016.
[63] H. Zhang and R. N. Lamb, 'Hydrophobic and lyophobic coating,' U.S. Patent Application Patent No. 11/576,787, 2005.
[64] A. Imhof and D. J. Pine, 'Stability of Nonaqueous Emulsions,' Journal of Colloid nad Interface Science, vol. 192, pp. 368–374, Jun. 1997.
[65] S. Sugiura, M. Nakajima, and M. Seki, 'Preparation of Monodispersed Emulsion with Large Droplets Using Microchannel Emulsification,' Journal of the American Oil Chemists' Society, vol. 79, pp. 515–519, May 2002.
[66] T. Trantidou, Y. Elani, E. Parsons, and O. Ces, 'Hydrophilic surface modification of PDMS for droplet microfluidics using a simple, quick, and robust method via PVA deposition,' Microsystems & Nanoengineering, vol. 3, p. 16091, Apr. 2017.
[67] S. Y. Teh, R. Khnouf, H. Fan, and A. P. Lee, 'Stable, biocompatible lipid vesicle generation by solvent extraction-based droplet microfluidics,' Biomicrofluidics, vol. 5, p. 44113, Dec. 2011.
[68] J. Tong, M. Nakajima, and H. Nabetani, 'Preparation of phospholipid oil-in-water microspheres by microchannel emulsification technique,' European Journal of Lipid Science and Technology, vol. 104, pp. 216-221, April 2002.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/70903-
dc.description.abstract本實驗結合微流道與介電濕潤兩種微流體技術,達到雙層乳化液滴的生成,並測試其介電濕潤顯示的效果,驗證其可作為電濕潤顯示器的可能性。傳統的電濕潤顯示器以黃光顯影製程建立像素邊界結構,之後再加入液體的封填,製程較複雜且時間成本高。為了簡化封裝製程,本實驗透過整合電極式微流道與可固化外相的特色,實現將像素結構的建立、液體封裝與介電濕潤測試結合在一片微流體晶片上完成。實驗中使用可固化外相之熱固化的PDMS或光固化的MD700,搭配中間相的Novec 7500或石蠟油,與內相的水,將一組材料通入雙流道聚焦接口設計的微流道中,測試雙層乳化液滴的生成,發現微流道在經過疏水疏油塗層處理後,以光固化MD700外相/石蠟油中間相/水內相可以形成形狀完整的雙層乳化液滴。在雙層乳化液滴的堆疊穩定度部分,測試了界面活性劑Pico-Surf™與Krytox 157 FSH,以及pickering emulsion粒子氟化二氧化矽加入MD700後的效果。接著以形成雙層乳化液滴陣列為目標,分別測試漸擴型與蜿蜒型下游之微流道的陣列生成效果,並結合共平面電極以驅動介電濕潤,達到完整雙層乳化液滴陣列的顯示效果。於介電濕潤測量方面,在共平面電極板上對固化後之雙層乳化液滴系統施加1 kHz的240 V交流電訊號,使內相水發生介電濕潤效果,正規化可視面積百分比由亮態的47%轉變為暗態的81%,在反應時間的部分,以240 ms達到完全攤平,移除電壓後以300 ms回復至初始狀態,驗證其作為電濕潤顯示器的對比度效果和毫米尺度驅動速度。
我們也提出新的粒子串顯示器結構,以PDMS外相/MD700中間相/含聚苯乙烯粒子的水內相,加上雙層結構微流道成功製造出薄球殼雙層乳化液滴結構,在結合平行板電極後,球殼所包覆之內相的粒子依然能排列成串以產生顯示效果,期望將球殼完整單一固化,形成單分散之乳化液滴像素,解決原先之乳化液滴合併問題。
zh_TW
dc.description.abstractWe combined the formation of double emulsions in microchannel and tested the performance of electrowetting-on-dielectric (EWOD) to demonstrate an electrowetting display (EWD). EWD pixels are usually constructed by photolithography and liquid dispensing steps, which are complex and time consuming. To simplify the package processes, here we employ the electrode-embedded microchannels and cross-linkable double emulsions to realize construction of pixel structures, packaging of liquids and actuation of EWOD on a single microfluidic chip. We investigated thermally curable PDMS and photo-curable MD700 as the outer continuous phase, along with the middle phase, Novec 7500 or paraffin oil, and the inner phase, died water. A microfluidic device with two flow-focusing junctions was designed and fabricated to evaluate the formation of double emulsions. With appropriate hydrophobic and oleophobic coatings, the formation of water/paraffin oil/MD700 double emulsions was successful. To improve the stability of the double emulsion array, we examined the surfactants, including Pico-Surf™ and Krytox 157 FSH, and fluorinated silica for pickering emulsion in MD700. Serpentine microchannel and gradually diverging microchannels were tested to obtain the double emulsion array. 1 kHz 240 V was applied to the cross-linked double emulsion array through coplanar electrodes to generate EWOD. The coverage of the inner water droplet was observed to change from 47% in white state to 81% in dark state, with the spreading time of 240 ms and recovering time of 300 ms.
We also demonstrated a new particle-chain display with the configuration of PDMS outer continuous phase/MD700 middle phase/polystyrene particle-dispersed water inner phase double emulsions with thin shell formed with a multilayered a microchannel. By integrating parallel plate electrodes, the particles in the inner phase encapsulated by the thin shell were arranged into particle chains and changed the transmittance as a display.
en
dc.description.provenanceMade available in DSpace on 2021-06-17T04:43:08Z (GMT). No. of bitstreams: 1
ntu-107-R05522114-1.pdf: 6139863 bytes, checksum: 772c2c426d7d9a62dc7cea8ec58627d1 (MD5)
Previous issue date: 2018
en
dc.description.tableofcontents致謝 I
中文摘要 II
ABSTRACT III
目錄 V
圖目錄 X
表目錄 XVIII
第一章 緒論 1
1-1 前言 1
1-2 微流體反射式顯示器 2
1-2.1電濕潤顯示器 2
1-2.2電泳顯示器 7
1-2.3粒子極化顯示器 10
1-3 研究目的與動機 12
第二章 理論介紹 14
2-1 乳化液滴 14
2-1.1乳化液滴的穩定性 15
2-1.2界面活性劑 15
2-1.2(a) 熱力學觀點 16
2-1.2(b) 親水親油平衡值 17
2-1.3 Pickering Emulsion 18
2-2 微流道 20
2-2.1流道親疏水性 20
2-2.2 流道幾何結構 21
2-2.2(a) T型接口 22
2-2.2(b) 流道聚焦 23
2-2.2(c) 同軸流 25
2-2.3 乳化液滴與毛細數 27
2-2.3(a) 毛細數與液滴生成 28
2-2.3(b) 毛細數與穩定性 28
2-3介電濕潤理論 30
2-4 粒子極化 32
2-3.1極化粒子串 32
2-3.2粒子介電泳 33
第三章 實驗架構與製程 35
3-1 電濕潤顯示器材料 35
3-1.1 雙層乳化液滴材料 35
3-1.2界面活性劑 38
3-1.3 染劑 40
3-1.4 奈米粒子材料處理 41
3-2 粒子串顯示器材料 43
3-3 實驗設計與架構 45
3-3.1 電濕潤顯示器結構與實驗 45
3-2.1(a) 雙層乳化液滴陣列之建立 45
3-2.1(b) 測試介電濕潤顯示效果 46
3-3.2 粒子串顯示器結構與實驗 47
3-3.3 微流道系統結構 48
3-3.3(a) 單一微流道系統 48
3-3.3(b) 整合平行板電極式微流道系統 49
3-3.3(b) 整合共平面電極式微流道系統 49
3-3.4 實驗系統架設 50
3-3.4(a) 單層微流道幾何設計 50
3-3.4(b) 雙層微流道幾何設計 51
3-3.4(c) 微流道系統架設 52
3-3.4(d) 介電濕潤測試系統架設 53
3-4 整合式微流體晶片製程 55
3-4.1單層微流道製程 55
3-4.1(a) 矽晶圓清洗 55
3-4.1(b) 光阻旋塗 55
3-4.1(c) 曝光 56
3-4.1(d) 顯影 56
3-4.1(e) 微流道翻模 56
3-4.1(f) 微流道下板 56
3-4.1(g) 微流道接合 56
3-4.2 雙層微流道製程 57
3-4.3平行板電極晶片製程 57
3-4.2(a) 晶片清洗 57
3-4.2(b) 塗佈介電層 57
3-4.3共平面電極晶片製程 58
3-4.3(a) 晶片清洗 58
3-4.3(b) 正光阻旋塗 58
3-4.3(c) 曝光與顯影 58
3-4.3(d) 濕蝕刻 58
3-4.3(e) 介電層旋塗 58
3-4.4疏水疏油塗層液製程 59
第四章 實驗結論與探討 60
4-1 電濕潤顯示器之雙層乳化液滴生成 60
4-1.1 熱固化外相雙層乳化液滴 60
4-1.2 光固化外相雙層乳化液滴 64
4-2 雙層乳化液滴陣列與介電濕潤效果 69
4-2.1整合平行板電極式微流道 69
4-2.1(a) 乳化液滴陣列之堆疊 69
4-2.1(b) 測試介電濕潤顯示效果 75
4-2.2整合共平面電極式微流道 79
4-2.2(a) 乳化液滴陣列之堆疊 79
4-2.2(b) 測試介電濕潤顯示效果 84
4-3.1 單層微流道之生成結果 89
4-3.2 雙層微流道之生成結果 90
第五章 結論與未來展望 92
參考文獻 94
附錄 99
實驗藥品與設備規格 99
實驗藥品 99
實驗設備 99
dc.language.isozh-TW
dc.subject微流體zh_TW
dc.subject反射式顯示器zh_TW
dc.subject微流道zh_TW
dc.subject介電濕潤zh_TW
dc.subject粒子極化zh_TW
dc.subjectreflective displayen
dc.subjectmicrochannelen
dc.subjectparticle polarizationen
dc.subjectmicrofluidicsen
dc.subjectelectrowetting-on-dielectricen
dc.title介電濕潤與粒子顯示介質之微流體乳化封裝zh_TW
dc.titleMicrofluidic Emulsion Packaging of Electrowetting and Particle Display Mediaen
dc.typeThesis
dc.date.schoolyear106-2
dc.description.degree碩士
dc.contributor.oralexamcommittee許聿翔(Yu-Hsiang Hsu),范育睿(Yu-Jui Fan)
dc.subject.keyword微流體,反射式顯示器,微流道,介電濕潤,粒子極化,zh_TW
dc.subject.keywordmicrofluidics,reflective display,microchannel,electrowetting-on-dielectric,particle polarization,en
dc.relation.page99
dc.identifier.doi10.6342/NTU201802454
dc.rights.note有償授權
dc.date.accepted2018-08-03
dc.contributor.author-college工學院zh_TW
dc.contributor.author-dept機械工程學研究所zh_TW
顯示於系所單位:機械工程學系

文件中的檔案:
檔案 大小格式 
ntu-107-1.pdf
  未授權公開取用
6 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved