請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/70899完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 陳振中 | |
| dc.contributor.author | Yen-Ling Lin | en |
| dc.contributor.author | 林彥伶 | zh_TW |
| dc.date.accessioned | 2021-06-17T04:42:58Z | - |
| dc.date.available | 2021-08-07 | |
| dc.date.copyright | 2018-08-07 | |
| dc.date.issued | 2018 | |
| dc.date.submitted | 2018-08-03 | |
| dc.identifier.citation | (1) Welcome to CDC stacks | Deaths : leading causes for 2015 - 50010 | Stephen B. Thacker CDC Library collection https://stacks.cdc.gov/view/cdc/50010 (accessed May 29, 2018).
(2) Titford, M. Rudolf Virchow: Cellular Pathologist. Lab. Med. 2010, 41, 311–312. (3) Kyle, R. A. Amyloidosis: A Convoluted Story. Br. J. Haematol. 114, 529–538. (4) Khurana, R.; Uversky, V. N.; Nielsen, L.; Fink, A. L. Is Congo Red an Amyloid- Specific Dye? J. Biol. Chem. 2001, 276, 22715–22721. (5) Benson, M. D.; Dasgupta, N. R. Amyloid Cardiomyopathy. J. Am. Coll. Cardiol. 2016, 68, 25–28. (6) Cohen, A. S.; Calkins, E. THE ISOLATION OF AMYLOID FIBRILS AND A STUDY OF THE EFFECT OF COLLAGENASE AND HYALURONIDASE. J. Cell Biol. 1964, 21, 481–486. (7) Pozo-Yauner, L. D.; Becerril, B.; Ochoa-Leyva, A.; Rodríguez-Ambriz, S. L.; Carrión, J. I. P.; Zavala-Padilla, G.; Sánchez-López, R.; Velasco, D. A. F. The Structural Determinants of the Immunoglobulin Light Chain Amyloid Aggregation. In Physical Biology of Proteins and Peptides; Springer, Cham, 2015; pp 1–28. (8) Bonar, L.; Cohen, A. S.; Skinner, M. M. Characterization of the Amyloid Fibril as a Cross-Beta Protein. Proc. Soc. Exp. Biol. Med. Soc. Exp. Biol. Med. N. Y. N 1969, 131, 1373–1375. (9) Hippius, H.; Neundörfer, G. The Discovery of Alzheimer’s Disease. Dialogues Clin. Neurosci. 2003, 5, 101–108. (10) Alzheimer’s Disease Fact Sheet http://www.nia.nih.gov/health/alzheimers-disease-fact-sheet (accessed May 29, 2018). (11) Selkoe, D. J. The Molecular Pathology of Alzheimer’s Disease. Neuron 1991, 6, 487–498. (12) Kang, J.; Lemaire, H.-G.; Unterbeck, A.; Salbaum, J. M.; Masters, C. L.; Grzeschik, K.-H.; Multhaup, G.; Beyreuther, K.; Müller-Hill, B. The Precursor of Alzheimer’s Disease Amyloid A4 Protein Resembles a Cell-Surface Receptor. Nature 1987, 325, 733–736. (13) Glenner, G. G.; Wong, C. W. Alzheimer’s Disease: Initial Report of the Purification and Characterization of a Novel Cerebrovascular Amyloid Protein. Biochem. Biophys. Res. Commun. 1984, 120, 885–890. (14) O’Brien, R. J.; Wong, P. C. Amyloid Precursor Protein Processing and Alzheimer’s Disease. Annu. Rev. Neurosci. 2011, 34, 185–204. (15) Yankner, B. A.; Dawes, L. R.; Fisher, S.; Villa-Komaroff, L.; Oster-Granite, M. L.; Neve, R. L. Neurotoxicity of a Fragment of the Amyloid Precursor Associated with Alzheimer’s Disease. Science 1989, 245, 417–420. (16) Hardy, J. A.; Higgins, G. A. Alzheimer’s Disease: The Amyloid Cascade Hypothesis. Science 1992, 256, 184–185. (17) Erten-Lyons, D.; Woltjer, R. L.; Dodge, H.; Nixon, R.; Vorobik, R.; Calvert, J. F.; Leahy, M.; Montine, T.; Kaye, J. Factors Associated with Resistance to Dementia despite High Alzheimer Disease Pathology. Neurology 2009, 72, 354– 360. (18) Sloane, J. A.; Pietropaolo, M. F.; Rosene, D. L.; Moss, M. B.; Peters, A.; Kemper, T.; Abraham, C. R. Lack of Correlation between Plaque Burden and Cognition in the Aged Monkey. Acta Neuropathol. (Berl.) 1997, 94, 471–478. (19) Gandy, S.; Simon, A. J.; Steele, J. W.; Lublin, A. L.; Lah, J. J.; Walker, L. C.; Levey, A. I.; Krafft, G. A.; Levy, E.; Checler, F.; et al. Days-to-Criterion as an Indicator of Toxicity Associated with Human Alzheimer Amyloid-β Oligomers. Ann. Neurol. 2010, 68, 220–230. (20) Wu, W.; Liu, Q.; Sun, X.; Yu, J.; Zhao, D.; Yu, Y.; Luo, J.; Hu, J.; Yu, Z.; Zhao, Y.; et al. Fibrillar Seeds Alleviate Amyloid-β Cytotoxicity by Omitting Formation of Higher-Molecular-Weight Oligomers. Biochem. Biophys. Res. Commun. 2013, 439, 321–326. (21) Gillam, J. E.; MacPhee, C. E. Modelling Amyloid Fibril Formation Kinetics: Mechanisms of Nucleation and Growth. J. Phys. Condens. Matter 2013, 25, 373101. (22) Meisl, G.; Yang, X.; Hellstrand, E.; Frohm, B.; Kirkegaard, J. B.; Cohen, S. I. A.; Dobson, C. M.; Linse, S.; Knowles, T. P. J. Differences in Nucleation Behavior Underlie the Contrasting Aggregation Kinetics of the Aβ40 and Aβ42 Peptides. Proc. Natl. Acad. Sci. 2014, 111, 9384–9389. (23) Lu, J.-X.; Qiang, W.; Yau, W.-M.; Schwieters, C. D.; Meredith, S. C.; Tycko, R. Molecular Structure of β-Amyloid Fibrils in Alzheimer’s Disease Brain Tissue. Cell 2013, 154, 1257–1268. (24) Qiang, W.; Yau, W.-M.; Lu, J.-X.; Collinge, J.; Tycko, R. Structural Variation in Amyloid-β Fibrils from Alzheimer’s Disease Clinical Subtypes. Nature 2017, 541, 217–221. (25) Lee, S. J. C.; Nam, E.; Lee, H. J.; Savelieff, M. G.; Lim, M. H. Towards an Understanding of Amyloid-β Oligomers: Characterization, Toxicity Mechanisms, and Inhibitors. Chem. Soc. Rev. 2017, 46, 310–323. (26) Kasai, T.; Tokuda, T.; Taylor, M.; Kondo, M.; Mann, D. M. A.; Foulds, P. G.; Nakagawa, M.; Allsop, D. Correlation of Aβ Oligomer Levels in Matched Cerebrospinal Fluid and Serum Samples. Neurosci. Lett. 2013, 551, 17–22. (27) O’Nuallain, B.; Freir, D. B.; Nicoll, A. J.; Risse, E.; Ferguson, N.; Herron, C.E.; Collinge, J.; Walsh, D. M. Amyloid β-Protein Dimers Rapidly Form Stable Synaptotoxic Protofibrils. J. Neurosci. 2010, 30, 14411–14419. (28) Shankar, G. M.; Li, S.; Mehta, T. H.; Garcia-Munoz, A.; Shepardson, N. E.; Smith, I.; Brett, F. M.; Farrell, M. A.; Rowan, M. J.; Lemere, C. A.; et al. Amyloid- β Protein Dimers Isolated Directly from Alzheimer’s Brains Impair Synaptic Plasticity and Memory. Nat. Med. 2008, 14, 837–842. (29) Wang, X.; Perry, G.; Smith, M. A.; Zhu, X. Amyloid-β-Derived Diffusible Ligands Cause Impaired Axonal Transport of Mitochondria in Neurons. Neurodegener. Dis. 2010, 7, 56–59. (30) Lambert, M. P.; Barlow, A. K.; Chromy, B. A.; Edwards, C.; Freed, R.; Liosatos, M.; Morgan, T. E.; Rozovsky, I.; Trommer, B.; Viola, K. L.; et al. Diffusible, Nonfibrillar Ligands Derived from Aβ1–42 Are Potent Central Nervous System Neurotoxins. Proc. Natl. Acad. Sci. 1998, 95, 6448–6453. (31) Lesné, S.; Koh, M. T.; Kotilinek, L.; Kayed, R.; Glabe, C. G.; Yang, A.; Gallagher, M.; Ashe, K. H. A Specific Amyloid-β Protein Assembly in the Brain Impairs Memory. Nature 2006, 440, 352–357. (32) Kayed, R.; Head, E.; Thompson, J. L.; McIntire, T. M.; Milton, S. C.; Cotman, C. W.; Glabe, C. G. Common Structure of Soluble Amyloid Oligomers Implies Common Mechanism of Pathogenesis. Science 2003, 300, 486–489. (33) Noguchi, A.; Matsumura, S.; Dezawa, M.; Tada, M.; Yanazawa, M.; Ito, A.; Akioka, M.; Kikuchi, S.; Sato, M.; Ideno, S.; et al. Isolation and Characterization of Patient-Derived, Toxic, High Mass Amyloid β-Protein (Aβ) Assembly from Alzheimer Disease Brains. J. Biol. Chem. 2009, 284, 32895–32905. (34) Hoshi, M.; Sato, M.; Matsumoto, S.; Noguchi, A.; Yasutake, K.; Yoshida, N.; Sato, K. Spherical Aggregates of β-Amyloid (Amylospheroid) Show High Proc. Natl. Acad. Sci. U. S. A. 2003, 100, 6370–6375. (35) Chimon, S.; Shaibat, M. A.; Jones, C. R.; Calero, D. C.; Aizezi, B.; Ishii, Y. Evidence of Fibril-like β-Sheet Structures in a Neurotoxic Amyloid Intermediate of Alzheimer’s β-Amyloid. Nat. Struct. Mol. Biol. 2007, 14, 1157–1164. (36) Chimon, S.; Ishii, Y. Capturing Intermediate Structures of Alzheimer’s β- Amyloid, Aβ(1−40), by Solid-State NMR Spectroscopy. J. Am. Chem. Soc. 2005, 127, 13472–13473. (37) Lasagna-Reeves, C. A.; Glabe, C. G.; Kayed, R. Amyloid-β Annular Protofibrils Evade Fibrillar Fate in Alzheimer Disease Brain. J. Biol. Chem. 2011, 286, 22122–22130. (38) Matsumura, S.; Shinoda, K.; Yamada, M.; Yokojima, S.; Inoue, M.; Ohnishi, T.; Shimada, T.; Kikuchi, K.; Masui, D.; Hashimoto, S.; et al. Two Distinct Amyloid β-Protein (Aβ) Assembly Pathways Leading to Oligomers and Fibrils Identified by Combined Fluorescence Correlation Spectroscopy, Morphology, and Toxicity Analyses. J. Biol. Chem. 2011, 286, 11555–11562. (39) Sandberg, A.; Luheshi, L. M.; Söllvander, S.; Barros, T. P. de; Macao, B.; Knowles, T. P. J.; Biverstål, H.; Lendel, C.; Ekholm-Petterson, F.; Dubnovitsky, A.; et al. Stabilization of Neurotoxic Alzheimer Amyloid-β Oligomers by Protein Engineering. Proc. Natl. Acad. Sci. 2010, 107 , 15595–15600. (40) Hepler, R. W.; Grimm, K. M.; Nahas, D. D.; Breese, R.; Dodson, E. C.; Acton, P.; Keller, P. M.; Yeager, M.; Wang, H.; Shughrue, P.; et al. Solution State Characterization of Amyloid β-Derived Diffusible Ligands. Biochemistry 2006, 45, 15157–15167. (41) Reed, M. N.; Hofmeister, J. J.; Jungbauer, L.; Welzel, A. T.; Yu, C.; Sherman, M. A.; Lesné, S.; LaDu, M. J.; Walsh, D. M.; Ashe, K. H.; et al. Cognitive Effects of Cell-Derived and Synthetically-Derived Aβ Oligomers. Neurobiol. Aging 2011,32, 1784–1794. (42) Tipping, K. W.; Oosten-Hawle, P. van; Hewitt, E. W.; Radford, S. E. Amyloid Fibres: Inert End-Stage Aggregates or Key Players in Disease? Trends Biochem. Sci. 2015, 40, 719–727. (43) Sengupta, U.; Nilson, A. N.; Kayed, R. The Role of Amyloid-β Oligomers in Toxicity, Propagation, and Immunotherapy. EBioMedicine 2016, 6, 42–49. (44) Matzke, S. F.; Creagh, A. L.; Haynes, C. A.; Prausnitz, J. M.; Blanch, H. W. Mechanisms of Protein Solubilization in Reverse Micelles. Biotechnol. Bioeng. 40, 91–102. (45) Tonova, K.; Lazarova, Z. Reversed Micelle Solvents as Tools of Enzyme Purification and Enzyme-Catalyzed Conversion. Biotechnol. Adv. 2008, 26, 516– 532. (46) Leser, M. E.; Luisi, P. L. Application of Reverse Micelles for the Extraction of Amino Acids and Proteins http://www.ingentaconnect.com/content/scs/chimia/1990/00000044/00000009/art0 0002 (accessed May 19, 2018). (47) Paul, B. K.; Mitra, R. K. Water Solubilization Capacity of Mixed Reverse Micelles: Effect of Surfactant Component, the Nature of the Oil, and Electrolyte Concentration. J. Colloid Interface Sci. 2005, 288, 261–279. (48) Corbeil, E. M.; Riter, R. E.; Levinger, N. E. Cosurfactant Impact on Probe Molecule in Reverse Micelles. J. Phys. Chem. B 2004, 108, 10777–10784. (49) Nazário, L. M. M.; Hatton, T. A.; Crespo, J. P. S. G. Nonionic Cosurfactants in AOT Reversed Micelles: Effect on Percolation, Size, and Solubilization Site. Langmuir 1996, 12, 6326–6335. (50) Fletcher, P. D. I.; Howe, A. M.; Robinson, B. H. The Kinetics of Solubilisate Exchange between Water Droplets of a Water-in-Oil Microemulsion. J. Chem. Soc.Faraday Trans. 1 Phys. Chem. Condens. Phases 1987, 83, 985–1006. (51) Küchler, A.; Yoshimoto, M.; Luginbühl, S.; Mavelli, F.; Walde, P. Enzymatic Reactions in Confined Environments. Nat. Nanotechnol. 2016, 11, 409–420. (52) Krei, G. A.; Hustedt, H. Extraction of Enzymes by Reverse Micelles. Chem. Eng. Sci. 1992, 47, 99–111. (53) Goto, M.; Ishikawa, Y.; Ono, T.; Nakashio, F.; Hatton, T. A. Extraction and Activity of Chymotrypsin Using AOT−DOLPA Mixed Reversed Micellar Systems. Biotechnol. Prog. 14, 729–734. (54) Ayala, G. A.; Kamat, S.; Beckman, E. J.; Russell, A. J. Protein Extraction and Activity in Reverse Micelles of a Nonionic Detergent. Biotechnol. Bioeng. 1992, 39, 806–814. (55) Van Horn, W. D.; Ogilvie, M. E.; Flynn, P. F. Reverse Micelle Encapsulation as a Model for Intracellular Crowding. J. Am. Chem. Soc. 2009, 131, 8030–8039. (56) Eskici, G.; Axelsen, P. H. Amyloid Beta Peptide Folding in Reverse Micelles. J. Am. Chem. Soc. 2017, 139, 9566–9575. (57) Eskici, G.; Axelsen, P. Amyloid Fibril Nucleation in Reverse Micelles. Biophys. J. 2015, 108, 65a. (58) Yeung, P. S.-W.; Axelsen, P. H. The Crowded Environment of a Reverse Micelle Induces the Formation of β-Strand Seed Structures for Nucleating Amyloid Fibril Formation. J. Am. Chem. Soc. 2012, 134, 6061–6063. (59) Finder, V. H.; Vodopivec, I.; Nitsch, R. M.; Glockshuber, R. The Recombinant Amyloid-β Peptide Aβ1–42 Aggregates Faster and Is More Neurotoxic than Synthetic Aβ1–42. J. Mol. Biol. 2010, 396, 9–18. (60) Schägger, H. Tricine–SDS-PAGE. Nat. Protoc. 2006, 1, 16–22. (61) Hillenkamp, F.; Karas, M.; Beavis, R. C.; Chait, B. T. Matrix-Assisted Laser Desorption/Ionization Mass Spectrometry of Biopolymers. Anal. Chem. 1991, 63,1193A-1203A. (62) Matrix-Assisted Laser Desorption Ionization (MALDI) - MagLab https://nationalmaglab.org/user-facilities/icr/techniques/maldi (accessed May 30, 2018). (63) Teplow, D. B. Preparation of Amyloid Β‐Protein for Structural and Functional Studies. In Methods in Enzymology; Amyloid, Prions, and Other Protein Aggregates, Part C; Academic Press, 2006; Vol. 413, pp 20–33. (64) Colvin, M. T.; Silvers, R.; Frohm, B.; Su, Y.; Linse, S.; Griffin, R. G. High Resolution Structural Characterization of Aβ42 Amyloid Fibrils by Magic Angle Spinning NMR. J. Am. Chem. Soc. 2015, 137, 7509–7518. (65) Naiki, H.; Gejyo, F. Kinetic Analysis of Amyloid Fibril Formation. In Methods in Enzymology; Amyloid, Prions, and Other Protein Aggregates; Academic Press, 1999; Vol. 309, pp 305–318. (66) Tamamushi, B.; Watanabe, N. The Formation of Molecular Aggregation Structures in Ternary System: Aerosol OT/Water/Iso-Octane. Colloid Polym. Sci. 1980, 258, 174–178. (67) Nishiki, T.; Muto, A.; Kataoka, T.; Kato, D. Back Extraction of Proteins from Reversed Micellar to Aqueous Phase: Partitioning Behaviour and Enrichment. Chem. Eng. J. Biochem. Eng. J. 1995, 59, 297–301. (68) Marcozzi, G.; Correa, N.; Luisi, P. L.; Caselli, M. Protein Extraction by Reverse Micelles: A Study of the Factors Affecting the Forward and Backward Transfer of α-Chymotrypsin and Its Activity. Biotechnol. Bioeng. 38, 1239–1246. (69) Mathew, D. S.; Juang, R.-S. Improved Back Extraction of Papain from AOT Reverse Micelles Using Alcohols and a Counter-Ionic Surfactant. Biochem. Eng. J.2005, 25, 219–225. (70) Khurana, R.; Coleman, C.; Ionescu-Zanetti, C.; Carter, S. A.; Krishna, V.;Grover, R. K.; Roy, R.; Singh, S. Mechanism of Thioflavin T Binding to Amyloid Fibrils. J. Struct. Biol. 2005, 151, 229–238. (71) Wolfe, L. S.; Calabrese, M. F.; Nath, A.; Blaho, D. V.; Miranker, A. D.; Xiong, Y. Protein-Induced Photophysical Changes to the Amyloid Indicator Dye Thioflavin T. Proc. Natl. Acad. Sci. U. S. A. 2010, 107, 16863–16868. (72) LeVine, H. Thioflavine T Interaction with Synthetic Alzheimer’s Disease Beta-Amyloid Peptides: Detection of Amyloid Aggregation in Solution. Protein Sci. Publ. Protein Soc. 1993, 2, 404–410. (73) LeVine, H. Quantification of β-Sheet Amyloid Fibril Structures with Thioflavin T. In Methods in Enzymology; Amyloid, Prions, and Other Protein Aggregates; Academic Press, 1999; Vol. 309, pp 274–284. (74) W C Johnson, J. Secondary Structure of Proteins Through Circular Dichroism Spectroscopy. Annu. Rev. Biophys. Biophys. Chem. 1988, 17, 145–166. (75) Greenfield, N. J. Using Circular Dichroism Spectra to Estimate Protein Secondary Structure. Nat. Protoc. 2006, 1, 2876–2890. (76) Brenner, S.; Horne, R. W. A Negative Staining Method for High Resolution Electron Microscopy of Viruses. Biochim. Biophys. Acta 1959, 34, 103–110. (77) De Carlo, S.; Harris, J. R. Negative Staining and Cryo-Negative Staining of Macromolecules and Viruses for TEM. Micron 2011, 42, 117–131. (78) Isabell, T. C.; Fischione, P. E.; O’Keefe, C.; Guruz, M. U.; Dravid, V. P. Plasma Cleaning and Its Applications for Electron Microscopy. Microsc. Microanal. 1999, 5, 126–135. (79) HIV Databases Review Article 1997 https://www.hiv.lanl.gov/content/sequence/HIV/REVIEWS/Gelderblom.html (accessed Jun 2, 2018). (80) Barth, H. G.; Boyes, B. E.; Jackson, C. Size Exclusion Chromatography. Anal.Chem. 1996, 68, 445–466. (81) Petkova, A. T.; Ishii, Y.; Balbach, J. J.; Antzutkin, O. N.; Leapman, R. D.; Delaglio, F.; Tycko, R. A Structural Model for Alzheimer’s β-Amyloid Fibrils Based on Experimental Constraints from Solid State NMR. Proc. Natl. Acad. Sci. 2002, 99, 16742–16747. (82) Larsson, P. T.; Hult, E.-L.; Wickholm, K.; Pettersson, E.; Iversen, T. CP/MAS 13C-NMR Spectroscopy Applied to Structure and Interaction Studies on Cellulose I. Solid State Nucl. Magn. Reson. 1999, 15, 31–40. (83) Yannoni, C. S. High-Resolution NMR in Solids: The CPMAS Experiment. Acc. Chem. Res. 1982, 15, 201–208. (84) Solid-State Nuclear Magnetic Resonance. Wikipedia; 2018. (85) vickyh. DARR. http://www.protein-nmr.org.uk/solid-state-mas-nmr/spectrum- descriptions/darr/ (86) Dalgarno, D. C.; Levine, B. A.; Williams, R. J. P. Structural Information from NMR Secondary Chemical Shifts of Peptide α C-H Protons in Proteins. Biosci. Rep. 1983, 3, 443–452. (87) Wang, Y.; Jardetzky, O. Probability-Based Protein Secondary Structure Identification Using Combined NMR Chemical-Shift Data. Protein Sci. Publ. Protein Soc. 2002, 11, 852–861. (88) Liao, Y.-H.; Chen, Y.-R. A Novel Method for Expression and Purification of Authentic Amyloid-β with and without 15N Labels. Protein Expr. Purif. 2015, 113, 63–71. (89) Garai, K.; Crick, S. L.; Mustafi, S. M.; Frieden, C. Expression and Purification of Amyloid-β Peptides from Escherichia Coli. Protein Expr. Purif. 2009, 66, 107–112. (90) Walsh, D. M.; Thulin, E.; Minogue, A. M.; Gustavsson, N.; Pang, E.; Teplow,D. B.; Linse, S. A Facile Method for Expression and Purification of the Alzheimer’s Disease-Associated Amyloid β-Peptide. Febs J. 2009, 276, 1266– 1281. (91) Lee, E. K.; Hwang, J. H.; Shin, D. Y.; Kim, D. I.; Yoo, Y. J. Production of Recombinant Amyloid-β Peptide 42 as an Ubiquitin Extension. Protein Expr. Purif. 2005, 40, 183–189. (92) Pirttilä, T.; Kim, K. S.; Mehta, P. D.; Frey, H.; Wisniewski, H. M. Soluble Amyloid β-Protein in the Cerebrospinal Fluid from Patients with Alzheimer’s Disease, Vascular Dementia and Controls. J. Neurol. Sci. 1994, 127, 90–95. (93) Lindhagen-Persson, M.; Brännström, K.; Vestling, M.; Steinitz, M.; Olofsson, A. Amyloid-β Oligomer Specificity Mediated by the IgM Isotype – Implications for a Specific Protective Mechanism Exerted by Endogenous Auto-Antibodies. PLOS ONE 2010, 5, e13928. (94) Lopez del Amo, J. M.; Schmidt, M.; Fink, U.; Dasari, M.; Fändrich, M.; Reif, B. An Asymmetric Dimer as the Basic Subunit in Alzheimer’s Disease Amyloid β Fibrils. Angew. Chem. Int. Ed. 51, 6136–6139. (95) Lin, T.-W.; Chang, C.-F.; Chang, Y.-J.; Liao, Y.-H.; Yu, H.-M.; Chen, Y.-R. Alzheimer’s Amyloid-β A2T Variant and Its N-Terminal Peptides Inhibit Amyloid- β Fibrillization and Rescue the Induced Cytotoxicity. PLoS ONE 2017, 12. (96) Potapov, A.; Yau, W.-M.; Ghirlando, R.; Thurber, K. R.; Tycko, R. Successive Stages of Amyloid-β Self-Assembly Characterized by Solid-State Nuclear Magnetic Resonance with Dynamic Nuclear Polarization. J. Am. Chem. Soc. 2015,137, 8294–8307. (97) Knowles, T. P. J.; Vendruscolo, M.; Dobson, C. M. The Amyloid State and Its Association with Protein Misfolding Diseases. Nat. Rev. Mol. Cell Biol. 2014, 15, 384–396. (98) Sachse, C.; Fändrich, M.; Grigorieff, N. Paired β-Sheet Structure of an Aβ(1- 40) Amyloid Fibril Revealed by Electron Microscopy. Proc. Natl. Acad. Sci. 2008, 105, 7462–7466. (99) Berhanu, W. M.; Hansmann, U. H. E. Structure and Dynamics of Amyloid-β Segmental Polymorphisms. PLOS ONE 2012, 7, e41479. (100) Zhang, R.; Pandey, M. K.; Nishiyama, Y.; Ramamoorthy, A. A Novel High- Resolution and Sensitivity-Enhanced Three-Dimensional Solid-State NMR Experiment Under Ultrafast Magic Angle Spinning Conditions. Sci. Rep. 2015, 5, 11810. (101) Ishii, Y.; Wickramasinghe, A.; Matsuda, I.; Endo, Y.; Ishii, Y.; Nishiyama, Y.; Nemoto, T.; Kamihara, T. Progress in Proton-Detected Solid-State NMR (SSNMR): Super-Fast 2D SSNMR Collection for Nano-Mole-Scale Proteins. J. Magn. Reson. 2018, 286, 99–109. (102) Wang, S.; Parthasarathy, S.; Xiao, Y.; Nishiyama, Y.; Long, F.; Matsuda, I.; Endo, Y.; Nemoto, T.; Yamauchi, K.; Asakura, T.; et al. Nano-Mole Scale Sequential Signal Assignment by 1H-Detected Protein Solid-State NMR Using Ultra-Fast Magic-Angle Spinning and HIGHLIGHT Spectral Editing. Chem. Commun. Camb. Engl. 2015, 51, 15055–15058. (103) Andreas, L. B.; Jaudzems, K.; Stanek, J.; Lalli, D.; Bertarello, A.; Marchand, T. L.; Paepe, D. C.-D.; Kotelovica, S.; Akopjana, I.; Knott, B.; et al. Structure of Fully Protonated Proteins by Proton-Detected Magic-Angle Spinning NMR. Proc. Natl. Acad. Sci. 2016, 113, 9187–9192. (104) Harmeier, A.; Wozny, C.; Rost, B. R.; Munter, L.-M.; Hua, H.; Georgiev, O.; Beyermann, M.; Hildebrand, P. W.; Weise, C.; Schaffner, W.; et al. Role of Amyloid-β Glycine 33 in Oligomerization, Toxicity, and Neuronal Plasticity. J. Neurosci. 2009, 29, 7582–7590. (105) Grimm, M. O. W.; Grimm, H. S.; Hartmann, T. Amyloid Beta as a Regulator of Lipid Homeostasis. Trends Mol. Med. 2007, 13, 337–344. (106) Evelyne Terzi, ‡; Günter Hölzemann, § and; Joachim Seelig*, ‡. Interaction of Alzheimer β-Amyloid Peptide(1−40) with Lipid Membranes† https://pubs.acs.org/doi/abs/10.1021/bi971843e (accessed Jun 12, 2018). (107) Rushworth, J. V.; Hooper, N. M. Lipid Rafts: Linking Alzheimer’s Amyloid-β Production, Aggregation, and Toxicity at Neuronal Membranes https://www.hindawi.com/journals/ijad/2011/603052/ (accessed Jun 12, 2018). (108) Morgado, I.; Garvey, M. Lipids in Amyloid-β Processing, Aggregation, and Toxicity. In Lipids in Protein Misfolding; Advances in Experimental Medicine and Biology; Springer, Cham, 2015; pp 67–94. (109) Maynard, C. J.; Bush, A. I.; Masters, C. L.;Cappai, R.; Li, Q.-X. Metals and Amyloid-β in Alzheimer’s Disease. Int. J. Exp. Pathol. 2005, 86, 147–159. (110) Faller, P.; Hureau, C.; Berthoumieu, O. Role of Metal Ions in the Self-assembly of the Alzheimer’s Amyloid-β Peptide https://pubs.acs.org/doi/abs/10.1021/ic4003059 (accessed Jun 12, 2018). | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/70899 | - |
| dc.description.abstract | 乙型類澱粉樣蛋白 (beta amyloid peptides, Aβ) 為阿茲海默症中關鍵因素,近年來研究指出寡聚物 (oligomers) 比纖維狀態具有更高細胞毒性。在本研究中,我們將Aβ培養於2,2,4-三甲基戊烷 (isooctane) 與Aerosol-OT (sodium bis(2-ethylhexyl) sulfosuccinate, AOT) 製備的逆相微胞 (reverse micelle) 中。動態光散射粒徑分析儀 (dynamic light scattering) 顯示其水合直徑約為33 nm。於25 °C培養六天後,反向萃取Aβ胜肽 (RMAβ6d) 以穿透式電子顯微鏡 (transmission electron microscope) 與OMAB抗體辨認,其為寡聚物狀態;以粒徑篩層析儀 (size exclusion chromatography) 分析其最大為54 kDa;Thioflavin-T (ThT) 數據指出具有β-sheet之反向萃取寡聚物快速生長為原纖維。固態核磁共振 (solid-state nuclear magnetic resonance) 結果顯示這些原纖維為單一構型 (monomorphism)。大部分in vitro培養之Aβ纖維具多態性 (polymorphism),我們推斷主要源自多重成核途徑;在本實驗中,因逆相微胞之物理性限制空間,Aβ聚集由一級成核 (primary
nucleation) 主導,因此能培養出結構均一之原纖維聚集物。此發現能解釋不同阿茲海默症患者腦中,有著不同構型之核種,卻由單一聚集生長機制主導,因此產生不同結構之Aβ纖維,但卻保有單一構型。 | zh_TW |
| dc.description.abstract | Beta-amyloid peptides (Aβ) are widely considered as the key factor in the molecular pathology of Alzheimer's disease (AD). According to recent research, Aβ oligomers are considered to be a more relevant therapeutic target than other species such as the fibrillar aggregates. In this study, we were able to incubate Aβ peptides in the reverse micelles (RMs) formed by water, sodium bis(2-ethylhexyl) sulfosuccinate (AOT), and isooctane, where the molar ratio of water to AOT was adjusted to 70. The hydrodynamic diameter of the reverse micelles was found to be ca. 33 nm by dynamic light scattering (DLS). After incubated at 25 °C for 6 days, Aβ peptides were in oligomeric state as confirmed with TEM images and OMAB dot blot assay. The size of the oligomers was estimated with analytical size exclusion chromatography (SEC) to be <54 kDa. The results of Thioflavin-T (ThT) assay revealed that the extracted Aβ oligomers in Tris buffer grew rapidly into protofibrils without lag time. Surprisingly, the solid-state NMR data indicate that the molecular structure of the protofibrils is highly monomorphic. We infer that the phenomenon of structural polymorphism commonly observed in amyloid fibrils prepared in vitro is largely due to the nucleation process of the amyloidogenic peptides, where both the primary and secondary nucleation processes are occurring. In this work, when the nucleation process was dominated by a single molecular process, i.e., primary nucleation within RMs, the molecular structure of the fibrillar aggregates became monomorphic. This finding sheds considerable insight into the intriguing observation that brain tissues of individual AD patients exhibit a single predominant but distinctive Aβ fibrillar structure. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-17T04:42:58Z (GMT). No. of bitstreams: 1 ntu-107-R05223138-1.pdf: 13461107 bytes, checksum: 3523a4e658d16d2f39317fc42620748d (MD5) Previous issue date: 2018 | en |
| dc.description.tableofcontents | 論文口試委員審定書 i
謝誌 ii 中文摘要 v 英文摘要 vi 縮寫表 vii 1.1. Aβ 胜肽與阿茲海默症之關聯性 1 1.1.1. 類澱粉蛋白 1 1.1.2. 阿茲海默症 2 1.1.3. Aβ 成核纖維化與多樣性 6 1.2. Aβ 胜肽寡聚物 7 1.2.1. 寡聚物致病機制推論 7 1.2.2. 寡聚物種類 8 1.2.3. 寡聚物之培養 11 1.3. 逆相微胞簡介 15 1.4. 研究動機 19 2.1. 化學試劑與使用儀器 20 2.1.1. 化學試劑 20 2.1.2. 使用儀器 22 2.2. 胜肽製備 23 2.2.1. 蛋白表達 23 2.2.2. 胜肽純化 26 2.2.3. 胜肽鑑定 28 2.3. 逆相微胞包覆 Aβ1-40 之製備 30 2.3.1. Aβ1-40 單體製備 30 2.3.2. 逆相微胞包覆 Aβ1-40 之製備 30 2.3.3. 反向萃取 Aβ 31 2.4. 鑑定方法 32 2.4.1. 動態光散射粒徑分析儀 32 2.4.2. 斑點印跡法 33 2.4.3. 硫黃素螢光偵測 34 2.4.4. 圓偏光二色光譜 35 2.4.5. 穿透式電子顯微鏡 36 2.4.6. 粒徑篩層析儀 37 2.4.7. 固態核磁共振儀 37 3.1. 蛋白表達製備胜肽以及其純化與鑑定 41 3.1.1. 蛋白表達 41 3.1.2. 胜肽之純化 41 3.1.3. 胜肽之鑑定 44 3.1.4. 蛋白表達之結果討論 45 3.2. 以逆相微胞包覆 Aβ1-40 單體 46 3.2.1. RMAβ1-40 之穩定度 46 3.2.2. 監測 Aβ1-40 於逆相微胞中之聚合 47 3.2.3. RMAβ 結果討論 49 3.3. 反向萃取 RMAβ 之鑑定 50 3.3.1. 寡聚物之鑑定 50 3.3.2. 原纖維之鑑定 58 3.3.3. 纖維之鑑定 63 3.3.4. 反向萃取 RMAβ 之結果討論 65 4.1. 論文總結 67 4.2. 未來展望 68 參考文獻 69 附錄 A Aβ1-42 之定點突變 82 附錄 B Aβ1-42 之基因序列設計與表達 84 附錄 C 逆相微胞平均包覆 Aβ 單體數 91 附錄 D MTBE 對於反向萃取 RMAβ 之影響 92 附錄 E Aβ 於 25 °C 培養之 ThT 監測圖 94 附錄 F 粒徑層析管柱 YMC Diol-300 之檢量線 95 附錄 G 逆相微胞之對照組 96 附錄 H 分析級超高速離心_RMAβ6d 97 附錄 I 估計反向萃取 RMAβ 中 Aβ 與 AOT 之比例 101 附錄 J 靜置培養之 Aβ1-40 纖維固態核磁共振光譜圖 102 附錄 K 估計 140 kHz 固態核磁共振實驗使用 0.5 mm 轉子中 Aβ 胜肽量 103 附錄 L 估計反向萃取 RMAβ 經除鹽後 Aβ 與 AOT 之比例 104 | |
| dc.language.iso | zh-TW | |
| dc.subject | 寡聚物 | zh_TW |
| dc.subject | 乙型類澱粉樣胜? | zh_TW |
| dc.subject | beta amyloid | en |
| dc.subject | oligomers | en |
| dc.title | 以逆相微胞製備乙型類澱粉樣多肽聚合物之研究 | zh_TW |
| dc.title | Aggregation of beta-amyloid peptides confined in reverse micelles | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 106-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 戴桓青,黃人則 | |
| dc.subject.keyword | 乙型類澱粉樣胜?,寡聚物, | zh_TW |
| dc.subject.keyword | beta amyloid,oligomers, | en |
| dc.relation.page | 105 | |
| dc.identifier.doi | 10.6342/NTU201802171 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2018-08-06 | |
| dc.contributor.author-college | 理學院 | zh_TW |
| dc.contributor.author-dept | 化學研究所 | zh_TW |
| 顯示於系所單位: | 化學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-107-1.pdf 未授權公開取用 | 13.15 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
