Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 應用力學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/70894
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor許聿翔(Yu-Hsiang Hsu)
dc.contributor.authorYa-Yun Changen
dc.contributor.author鄭雅云zh_TW
dc.date.accessioned2021-06-17T04:42:45Z-
dc.date.available2020-08-21
dc.date.copyright2020-08-21
dc.date.issued2020
dc.date.submitted2020-08-20
dc.identifier.citation1. Orange, J.S., Natural killer cell deficiency. Journal of Allergy and Clinical Immunology, 2013. 132(3): p. 515-525.
2. Campbell, K.S. and J. Hasegawa, Natural killer cell biology: An update and future directions. Journal of Allergy and Clinical Immunology, 2013. 132(3): p. 536-544.
3. Garstecki, P., et al., Formation of droplets and bubbles in a microfluidic T-junction—scaling and mechanism of break-up. Lab on a Chip, 2006. 6(3): p. 437-446.
4. Anna, S.L., N. Bontoux, and H.A. Stone, Formation of dispersions using “flow focusing” in microchannels. 2003. 82(3): p. 364-366.
5. Zhu, P. and L. Wang, Passive and active droplet generation with microfluidics: a review. Lab on a Chip, 2017. 17(1): p. 34-75.
6. Christopher, G.F. and S.L. Anna, Microfluidic methods for generating continuous droplet streams. Journal of Physics D: Applied Physics, 2007. 40(19): p. R319-R336.
7. Teh, S.-Y., et al., Droplet microfluidics. Lab on a Chip, 2008. 8(2): p. 198-220.
8. Xu, Q., et al., Preparation of monodisperse biodegradable polymer microparticles using a microfluidic flow-focusing device for controlled drug delivery. Small (Weinheim an der Bergstrasse, Germany), 2009. 5(13): p. 1575-1581.
9. Martin-Banderas, L., et al., Flow Focusing: A Versatile Technology to Produce Size-Controlled and Specific-Morphology Microparticles. Small (Weinheim an der Bergstrasse, Germany), 2005. 1: p. 688-92.
10. Shestopalov, I., J.D. Tice, and R.F. Ismagilov, Multi-step synthesis of nanoparticles performed on millisecond time scale in a microfluidic droplet-based system. Lab on a Chip, 2004. 4(4): p. 316-321.
11. Zhu, Y. and Q. Fang, Analytical detection techniques for droplet microfluidics—A review. Analytica Chimica Acta, 2013. 787: p. 24-35.
12. Dittrich, P.S. and A. Manz, Lab-on-a-chip: microfluidics in drug discovery. Nature Reviews Drug Discovery, 2006. 5(3): p. 210-218.
13. Escors, D. and K. Breckpot, Lentiviral vectors in gene therapy: their current status and future potential. Archivum immunologiae et therapiae experimentalis, 2010. 58(2): p. 107-119.
14. Buchschacher, G.L. and F. Wong-Staal, Development of lentiviral vectors for gene
15. Connolly, J.B., Lentiviruses in gene therapy clinical research. Gene Therapy, 2002. 9(24): p. 1730-1734.
16. Milone, M.C. and U. O'Doherty, Clinical use of lentiviral vectors. Leukemia, 2018. 32(7): p. 1529-1541.
17. Blömer, U., et al., Highly efficient and sustained gene transfer in adult neurons with a lentivirus vector. Journal of Virology, 1997. 71(9): p. 6641.
18. Naldini, L., et al., In Vivo Gene Delivery and Stable Transduction of Nondividing Cells by a Lentiviral Vector. Science, 1996. 272(5259): p. 263.
19. Klco, J.M., et al., Association Between Mutation Clearance After Induction Therapy and Outcomes in Acute Myeloid Leukemia. JAMA, 2015. 314(8): p. 811-822.
20. Parkhurst, M.R., et al., Adoptive Transfer of Autologous Natural Killer Cells Leads to High Levels of Circulating Natural Killer Cells but Does Not Mediate Tumor Regression. Clinical Cancer Research, 2011. 17(19): p. 6287.
21. ISHIKAWA, E., et al., Autologous Natural Killer Cell Therapy for Human Recurrent Malignant Glioma. 2004. 24(3B): p. 1861-1871.
22. Cheng, M., et al., NK cell-based immunotherapy for malignant diseases. Cellular Molecular Immunology, 2013. 10(3): p. 230-252.
23. Curti, A., et al., Larger Size of Donor Alloreactive NK Cell Repertoire Correlates with Better Response to NK Cell Immunotherapy in Elderly Acute Myeloid Leukemia Patients. Clinical Cancer Research, 2016. 22(8): p. 1914.
24. Besser, M.J., et al., Development of Allogeneic NK Cell Adoptive Transfer Therapy in Metastatic Melanoma Patients. In Vitro Preclinical Optimization Studies, 2013. 8(3).
25. Borghaei, H., M.R. Smith, and K.S. Campbell, Immunotherapy of cancer. European Journal of Pharmacology, 2009. 625(1): p. 41-54.
26. Vivier, E., et al., Functions of natural killer cells. Nature Immunology, 2008. 9(5): p. 503-510.
27. Trinchieri, G., Biology of Natural Killer Cells, in Advances in Immunology, F.J. Dixon, Editor. 1989, Academic Press. p. 187-376.
28. Smyth, M.J., et al., New aspects of natural-killer-cell surveillance and therapy of cancer. Nature Reviews Cancer, 2002. 2(11): p. 850-861.
29. Cerwenka, A. and L.L. Lanier, Natural killer cells, viruses and cancer. Nature Reviews Immunology, 2001. 1(1): p. 41-49.
30. Thorsen, T., et al., Dynamic Pattern Formation in a Vesicle-Generating Microfluidic Device. Physical Review Letters, 2001. 86(18): p. 4163-4166.
31. Kim, J., et al., Microfluidic approaches for gene delivery and gene therapy. Lab on a chip, 2011. 11: p. 3941-8.
32. Gehl, J., Electroporation: theory and methods, perspectives for drug delivery, gene therapy and research. 2003. 177(4): p. 437-447.
33. Kelly, B.T., et al., Miniaturizing chemistry and biology in microdroplets. Chemical Communications, 2007(18): p. 1773-1788.
34. Rothe, A., R.N. Surjadi, and B.E. Power, Novel proteins in emulsions using in vitro compartmentalization. Trends in Biotechnology, 2006. 24(12): p. 587-592.
35. Leshansky, A.M. and L.M. Pismen, Breakup of drops in a microfluidic T junction. Physics of Fluids, 2009. 21(2): p. 023303.
36. Castro-Hernández, E., et al., Scaling the drop size in coflow experiments. New Journal of Physics, 2009. 11(7): p. 075021.
37. Takeuchi, S., et al., An Axisymmetric Flow-Focusing Microfluidic Device. Advanced Materials, 2005. 17(8): p. 1067-1072.
38. Ward, T., et al., Microfluidic Flow Focusing: Drop Size and Scaling in Pressure Versus Flow-Rate-Driven Pumping. Electrophoresis, 2005. 26: p. 3716-24.
39. Naldini, L., Lentiviruses as gene transfer agents for delivery to non-dividing cells. Current Opinion in Biotechnology, 1998. 9(5): p. 457-463.
40. Vigna, E. and L. Naldini, Lentiviral vectors: excellent tools for experimental gene transfer and promising candidates for gene therapy. The Journal of Gene Medicine, 2000. 2(5): p. 308-316.
41. MacGregor, R.R., Clinical protocol. A phase 1 open-label clinical trial of the safety and tolerability of single escalating doses of autologous CD4 T cells transduced with VRX496 in HIV-positive subjects. Human gene therapy, 2001. 12(16): p. 2028-2029.
42. Levine, B.L., et al., Gene transfer in humans using a conditionally replicating lentiviral vector. Proceedings of the National Academy of Sciences, 2006. 103(46): p. 17372.
43. Cavazzana-Calvo, M., et al., Transfusion independence and HMGA2 activation after gene therapy of human β-thalassaemia. Nature, 2010. 467(7313): p. 318-322.
44. Prastowo, A., et al., Biocompatibility of fluids for multiphase drops-in-drops microfluidics. Biomedical Microdevices, 2016. 18(6): p. 114.
45. Kemna, E.W.M., et al., Label-free, high-throughput, electrical detection of cells in droplets. Analyst, 2013. 138(16): p. 4585-4592.
46. Smith, C.A., et al., Sensitive, High Throughput Detection of Proteins in Individual, Surfactant-Stabilized Picoliter Droplets Using Nanoelectrospray Ionization Mass Spectrometry. Analytical Chemistry, 2013. 85(8): p. 3812-3816.
47. Franke, T., et al., Surface acoustic wave (SAW) directed droplet flow in microfluidics for PDMS devices. Lab on a Chip, 2009. 9(18): p. 2625-2627.
48. DeJournette, C.J., et al., Creating Biocompatible Oil–Water Interfaces without Synthesis: Direct Interactions between Primary Amines and Carboxylated Perfluorocarbon Surfactants. Analytical Chemistry, 2013. 85(21): p. 10556-10564.
49. Chen, C.-H., et al., Enhancing Protease Activity Assay in Droplet-Based Microfluidics Using a Biomolecule Concentrator. Journal of the American Chemical Society, 2011. 133(27): p. 10368-10371.
50. Abate, A.R., et al., Impact of inlet channel geometry on microfluidic drop formation. Physical Review E, 2009. 80(2): p. 026310.
51. Labanieh, L., et al., Floating Droplet Array: An Ultrahigh-Throughput Device for Droplet Trapping, Real-time Analysisand Recovery. 2015. 6(10): p. 1469-1482.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/70894-
dc.description.abstract免疫細胞療法可以被廣義的定義為疾病的治療方法,而近年來免疫細胞療法漸漸被視為治療癌症的革命性方式。本研究將Lentivirus(慢病毒)與自然殺手細胞的傳統實驗室進行方式,結合微流道晶片技術,進行細胞活性與 DNA 表現與慢病毒感染自然殺手細胞的的測試與實驗,使用DNA活性染劑:(7-AAD 7-氨基放線菌素D、7-Aminoactinomycin D)染細胞的DNA與利用其表現的綠色螢光蛋白( Green fluorescent protein, GFP)來分析旨在改善其良率。
而在應用層面上,本研究中的微流道晶片,為 了讓細胞表現特定蛋白質,慢病毒載體基因傳遞需要進入有興趣的細胞,透過在微流道晶片的結構設計,讓慢病毒和自然殺手細胞先接觸,讓病毒將特定的DNA帶入自然殺手細胞的細胞核內,沿著流場方向流動,由連續相-油一起被包裹在液滴內,此時大量增加了彼此接觸的表面積、擴散距離縮短,達到單位體積內病毒濃度增加和實驗時間減少的目的。微流道材質為PMMA(聚甲基丙烯酸甲酯),由雷射雕刻機和熱壓機製造晶片,結 構設計採用聚焦流動的型式生成液滴,減少液滴與壁面的接觸,能避免考慮壁面疏水性的問題,維持實驗的穩定與重複性。
流式細胞儀(flow cytometer)被廣泛的應用於生物的醫學研究與分析,可以分析、紀錄流動狀態的細胞和發射螢光信號,用於分析細胞的活性、顆粒狀態和反映其生物學特性等。本研究於點狀分析圖(Dot Plot)中觀測細胞的活性與表現的綠 色螢光蛋白分佈,實驗在經過微流道晶片後,持續培養若干小時後,觀測其活性與感染狀況 。
zh_TW
dc.description.abstractImmune cell therapy can be broadly defined as a treatment method for diseases. In recent years, immune cell therapy has gradually been regarded as a revolutionary way to treat cancer. This study uses the traditional laboratory method of lentivirus and natural killer cells, combined with microfluidic chip technology, were used to test and experiment on cell viability and DNA performance and natural killer cell infection by lentivirus, using DNA active dye: 7-AAD (7-Aminoactinomycin D), the DNA of cells stained with the expression of Green fluorescent protein (GFP) is used to analyze, in order to improve its yield.
The application of this research, in order to allow cells to express specific proteins, the lentiviral vector gene delivery needs to enter the cells of interest. Through the structural design of the microfluidic chip, the lentivirus and nature killer cells contact first, let the virus bring specific DNA into the nucleus of the nature killer cell, and flow along the direction of the flow field. The continuous phase and oil are wrapped together in the droplet. At this time, the contact surface area is greatly increased and the diffusion distance is shortened. , To achieve the purpose of increasing the virus concentration per unit volume and reducing the experimental time. The material of the micro flow channel is PMMA (polymethyl methacrylate). The wafer is manufactured by a laser engraving machine and a hot press. The structure design adopts a focused flow pattern to generate droplets, which reduces the contact between droplets and the wall and avoids considering the wall The problem of hydrophobicity maintains the stability and repeatability of the experiment.
Flow cytometer is widely used in biological medical research and analysis. It can analyze and record cells in the flow state and emit fluorescent signals, and is used to IV analyze cell activity, particle state and reflect its biological characteristics, etc. In this study, the cell activity and the expression of the green fluorescent protein distribution were observed in the dot plot. After passing through the microfluidic chip system, the experiment continued to incubate for several hours to observe its activity and infection situation.
en
dc.description.provenanceMade available in DSpace on 2021-06-17T04:42:45Z (GMT). No. of bitstreams: 1
U0001-2008202009514100.pdf: 12856170 bytes, checksum: ce676054b34d2d39e12595e77f99dc97 (MD5)
Previous issue date: 2020
en
dc.description.tableofcontents致謝 ... I
摘要 ... II
Abstract ... III
目錄 ... V
圖目錄 ... VII
表目錄 ... XIV
第1章 緒論 ... 1
1-1 前言 ... 1
1-2 研究動機 ... 2
1-3 論文架構 ... 3
第2章 文獻回顧 ... 4
2-1 文獻回顧 ... 4
2-1.1 免疫細胞療法 ... 4
2-1.2 自然殺手細胞和其毒殺機制 ... 5
2-1.3 微流道晶片 ... 6
2-1.4 病毒載體與慢病毒 ... 7
第3章 實驗方法 ... 9
3-1 微流道晶片製作 ... 9
3-1.1 微流道晶片設計 ... 9
3-1.2 微流道晶片製程 ... 10
3-1.3 流道疏水處理 ... 10
3-4 實驗架設與流程 ... 12
3-5 流式細胞儀 ... 14
第4章 實驗結果 ... 17
4-1 微流道剪應力對細胞的傷害 ... 17
4-2 液滴與油 ... 22
4-2.1 油相:十六烷 ... 22
4-3 細胞存活率 ... 26
4-4 病毒感染細胞的效率 ... 79
第5章 結論 ... 83
參考文獻 ... 84
dc.language.isozh-TW
dc.subject慢病毒zh_TW
dc.subject免疫細胞療法zh_TW
dc.subject流式細胞儀zh_TW
dc.subject微流道zh_TW
dc.subject自然殺手細胞zh_TW
dc.subjectImmune cell therapyen
dc.subjectlentivirusen
dc.subjectnatural killer cellsen
dc.subjectmicrofluidicsen
dc.subjectflow cytometryen
dc.title利用微流體系統產生之微液珠提升Lentivirus感染自然殺手細胞效率之研究zh_TW
dc.titleStudy on improving the efficiency of nature killer cells infected by lentivirus by using micro droplets produced by microfluidics systemen
dc.typeThesis
dc.date.schoolyear108-2
dc.description.degree碩士
dc.contributor.coadvisor蔣雅郁(Ya-Yu Chiang)
dc.contributor.oralexamcommittee林致廷(Chih-Ting Lin),蔡博宇(Bo-Yu Tsai)
dc.subject.keyword免疫細胞療法,慢病毒,自然殺手細胞,微流道,流式細胞儀,zh_TW
dc.subject.keywordImmune cell therapy,lentivirus,natural killer cells,microfluidics,flow cytometry,en
dc.relation.page87
dc.identifier.doi10.6342/NTU202004124
dc.rights.note有償授權
dc.date.accepted2020-08-20
dc.contributor.author-college工學院zh_TW
dc.contributor.author-dept應用力學研究所zh_TW
顯示於系所單位:應用力學研究所

文件中的檔案:
檔案 大小格式 
U0001-2008202009514100.pdf
  未授權公開取用
12.55 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved