請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/70887
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 呂東武(Tung-Wu Lu) | |
dc.contributor.author | Chia-Ru Chang | en |
dc.contributor.author | 張家儒 | zh_TW |
dc.date.accessioned | 2021-06-17T04:42:28Z | - |
dc.date.available | 2023-08-15 | |
dc.date.copyright | 2018-08-15 | |
dc.date.issued | 2018 | |
dc.date.submitted | 2018-08-03 | |
dc.identifier.citation | 1. Lu, T.W. and J.J. O'Connor, Lines of action and moment arms of the major force-bearing structures crossing the human knee joint: comparison between theory and experiment. Journal of Anatomy, 1996. 189(Pt 3): p. 575-585.
2. Majewski, M., H. Susanne, and S. Klaus, Epidemiology of athletic knee injuries: A 10-year study. The Knee, 2006. 13(3): p. 184-188. 3. Woo, S.L.Y., et al., Biomechanics of knee ligaments: injury, healing, and repair. Journal of Biomechanics, 2006. 39(1): p. 1-20. 4. Kaufman, K.R., et al., Gait characteristics of patients with knee osteoarthritis. Journal of Biomechanics, 2001. 34(7): p. 907-915. 5. Davis, M., et al., Knee osteoarthritis and physical functioning: evidence from the NHANES I Epidemiologic Followup Study. The Journal of rheumatology, 1991. 18(4): p. 591-598. 6. McLeod, W.D. and T. Blackburn, Biomechanics of knee rehabilitation with cycling. The American journal of sports medicine, 1980. 8(3): p. 175-180. 7. Lu, T.-W., et al., In vivo three-dimensional kinematics of the normal knee during active extension under unloaded and loaded conditions using single-plane fluoroscopy. Medical Engineering & Physics, 2008. 30(8): p. 1004-1012. 8. Lin, Y.-T., In Vivo Stress Distribution of the Knee Ligaments During Functional Activities. 2008, National Taiwan University. 9. Guo, J.-A., In Vivo Three-Dimensional Finite Element Simulation and Analyses of the Knee Ligaments During Functional Activites. 2010, National Taiwan University. 10. Keng, C.-W., Three-Dimensional Finite Element Analysis of the Knee-Joint Ligament During Sit-to-Stand. 2012, National Taiwan University. 11. Lin, C.-L., Finite Element Analysis of the Knee Ligaments During Sit-to-Stand in Normal and Total Knee Replacement. 2013, National Taiwan University. 12. Lin, T.-C., Three-Dimensional Finite Element Analysis of the Knee Ligaments During Cycling in Normal Young Subjects. 2014, National Taiwan University. 13. Chen, T.-H., Effects of Pedaling Direction on Knee Ligament and Articular Surface Loading During Cycling. 2016, National Taiwan University. 14. Takahashi, M., et al., Anatomical study of the femoral and tibial insertions of the anteromedial and posterolateral bundles of human anterior cruciate ligament. The American journal of sports medicine, 2006. 34(5): p. 787-792. 15. Papannagari, R., et al., Function of posterior cruciate ligament bundles during in vivo knee flexion. The American journal of sports medicine, 2007. 35(9): p. 1507-1512. 16. Nordin, M. and V.H. Frankel, Basic biomechanics of the musculoskeletal system. 2001: Lippincott Williams & Wilkins. 17. Wilson, D.R., J.D. Feikes, and J.J. O’Connor, Ligaments and articular contact guide passive knee flexion. Journal of Biomechanics, 1998. 31(12): p. 1127-1136. 18. Wilson, D.R., et al., The components of passive knee movement are coupled to flexion angle. Journal of Biomechanics, 2000. 33(4): p. 465-473. 19. Aigner, T. and J. Stöve, Collagens—major component of the physiological cartilage matrix, major target of cartilage degeneration, major tool in cartilage repair. Advanced Drug Delivery Reviews, 2003. 55(12): p. 1569-1593. 20. Mow, V.C., et al., Biphasic Creep and Stress Relaxation of Articular Cartilage in Compression: Theory and Experiments. Journal of Biomechanical Engineering, 1980. 102(1): p. 73-84. 21. Beynnon, B.D., et al., Anterior cruciate ligament strain behavior during rehabilitation exercises in vivo. The American Journal of Sports Medicine, 1995. 23(1): p. 24-34. 22. Fujie, H., et al., Forces and moments in six-DOF at the human knee joint: Mathematical description for control. Journal of Biomechanics, 1996. 29(12): p. 1577-1585. 23. Ali, A.A., et al., Combined Measurement and Modeling of Specimen-Specific Knee Mechanics for Healthy and ACL-deficient Conditions. Journal of Biomechanics, 2017. 24. Fujie, H., et al., The Use of Robotics Technology to Study Human Joint Kinematics: A New Methodology. Journal of Biomechanical Engineering, 1993. 115(3): p. 211-217. 25. Rudy, T.W., et al., A combined robotic/universal force sensor approach to determine in situ forces of knee ligaments. Journal of Biomechanics, 1996. 29(10): p. 1357-1360. 26. Kadaba, M.P., H. Ramakrishnan, and M. Wootten, Measurement of lower extremity kinematics during level walking. Journal of orthopaedic research, 1990. 8(3): p. 383-392. 27. Lafortune, M.A., et al., Three-dimensional kinematics of the human knee during walking. Journal of Biomechanics, 1992. 25(4): p. 347-357. 28. Lu, T.W. and J.J. O’Connor, Bone position estimation from skin marker co-ordinates using global optimisation with joint constraints. Journal of Biomechanics, 1999. 32(2): p. 129-134. 29. Strasser, H., Lehrbuch der Muskel-und Gelenkmechanik. Bd. 1: Allgem. Teil., Bd. 4: Spez. Teil, Die obere Extremitat. 1917, Springer, Berlin. 30. Beynnon, B., et al., The measurement of anterior cruciate ligament strain in vivo. International orthopaedics, 1992. 16(1): p. 1-12. 31. Wismans, J., et al., A three-dimensional mathematical model of the knee-joint. Journal of Biomechanics, 1980. 13(8): p. 677-685. 32. O'connor, J., et al., The geometry of the knee in the sagittal plane. Proceedings of the Institution of Mechanical Engineers, Part H: Journal of Engineering in Medicine, 1989. 203(4): p. 223-233. 33. Zavatsky, A. and J. O'Connor, A Model of human knee ligaments in the sagittal plane: part 1: response to passive flexion. Proceedings of the Institution of Mechanical Engineers, Part H: Journal of Engineering in Medicine, 1992. 206(3): p. 125-134. 34. Zavatsky, A. and J. O'Connor, A model of human knee ligaments in the sagittal plane: part 2: fibre recruitment under load. Proceedings of the Institution of Mechanical Engineers, Part H: Journal of Engineering in Medicine, 1992. 206(3): p. 135-145. 35. Song, Y., et al., A three-dimensional finite element model of the human anterior cruciate ligament: a computational analysis with experimental validation. Journal of Biomechanics, 2004. 37(3): p. 383-390. 36. Peña, E., et al., A three-dimensional finite element analysis of the combined behavior of ligaments and menisci in the healthy human knee joint. Journal of Biomechanics, 2006. 39(9): p. 1686-1701. 37. Limbert, G., M. Taylor, and J. Middleton, Three-dimensional finite element modelling of the human ACL: simulation of passive knee flexion with a stressed and stress-free ACL. Journal of biomechanics, 2004. 37(11): p. 1723-1731. 38. Limbert, G., J. Middleton, and M. Taylor, Finite element analysis of the human ACL subjected to passive anterior tibial loads. Computer methods in biomechanics and biomedical engineering, 2004. 7(1): p. 1-8. 39. Blankevoort, L., et al., Articular contact in a three-dimensional model of the knee. Journal of Biomechanics, 1991. 24(11): p. 1019-1031. 40. Bendjaballah, M.Z., A. Shirazi-Adl, and D.J. Zukor, Biomechanical response of the passive human knee joint under anterior-posterior forces. Clinical Biomechanics, 1998. 13(8): p. 625-633. 41. Bendjaballah, M.Z., A. Shirazi-Adl, and D.J. Zukor, Biomechanics of the human knee joint in compression: reconstruction, mesh generation and finite element analysis. The Knee, 1995. 2(2): p. 69-79. 42. Cohen, Z.A., et al., Knee cartilage topography, thickness, and contact areas from MRI: in-vitro calibration and in-vivo measurements. Osteoarthritis and Cartilage, 1999. 7(1): p. 95-109. 43. Li, G., et al., A Validated Three-Dimensional Computational Model of a Human Knee Joint. Journal of Biomechanical Engineering, 1999. 121(6): p. 657-662. 44. Li, G., O. Lopez, and H. Rubash, Variability of a Three-Dimensional Finite Element Model Constructed Using Magnetic Resonance Images of a Knee for Joint Contact Stress Analysis. Journal of Biomechanical Engineering, 2001. 123(4): p. 341-346. 45. Holmes, J., A. Pruitt, and N. Whalen, Lower extremity overuse in bicycling. Clinics in sports medicine, 1994. 13(1): p. 187-205. 46. Bini, R., P.A. Hume, and J.L. Croft, Effects of bicycle saddle height on knee injury risk and cycling performance. Sports medicine, 2011. 41(6): p. 463-476. 47. Kim, P.T., et al., Mountain biking injuries requiring trauma center admission: a 10-year regional trauma system experience. Journal of Trauma and Acute Care Surgery, 2006. 60(2): p. 312-318. 48. Dannenberg, A.L., et al., Predictors of injury among 1638 riders in a recreational long-distance bicycle tour: Cycle Across Maryland. The American journal of sports medicine, 1996. 24(6): p. 747-753. 49. Newmiller, J., M.L. Hull, and F.E. Zajac, A mechanically decoupled two force component bicycle pedal dynamometer. Journal of Biomechanics, 1988. 21(5): p. 375-386. 50. Hull, T.B.M.L. and D. Wootten, An improved accuracy six-load component pedal dynamometer for cycling. Journal of Biomechanics, 1996. 29(8): p. 1105-1110. 51. Bini, R.R., F. Diefenthaeler, and C.B. Mota, Fatigue effects on the coordinative pattern during cycling: Kinetics and kinematics evaluation. Journal of Electromyography and Kinesiology, 2010. 20(1): p. 102-107. 52. Fleming, B.C., et al., The strain behavior of the anterior cruciate ligament during bicycling. The American journal of sports medicine, 1998. 26(1): p. 109-118. 53. Kutzner, I., et al., Loading of the Knee Joint During Ergometer Cycling: Telemetric In Vivo Data. Journal of Orthopaedic & Sports Physical Therapy, 2012. 42(12): p. 1032-1038. 54. Bini, R.R., P.A. Hume, and J.L. Crofta, Effects of saddle height on pedal force effectiveness. Procedia Engineering, 2011. 13: p. 51-55. 55. Tamborindeguy, A.C. and R. Rico Bini, Does saddle height affect patellofemoral and tibiofemoral forces during bicycling for rehabilitation? Journal of Bodywork and Movement Therapies, 2011. 15(2): p. 186-191. 56. Jorge, M. and M.L. Hull, Analysis of EMG measurements during bicycle pedalling. Journal of Biomechanics, 1986. 19(9): p. 683-694. 57. Van Ginckel, A., et al., Location of knee pain in medial knee osteoarthritis: patterns and associations with self-reported clinical symptoms. Osteoarthritis and Cartilage, 2016. 24(7): p. 1135-1142. 58. Carvalho Júnior, L.H.d., et al., Femoral Roll Back In Total Knee Arthroplasty: Comparison Between Prostheses That Preserve And Sacrifice The Posterior Cruciate Ligament. Revista Brasileira de Ortopedia, 2011. 46(4): p. 417-419. 59. Nieminen, M.T., et al., Prediction of biomechanical properties of articular cartilage with quantitative magnetic resonance imaging. Journal of Biomechanics, 2004. 37(3): p. 321-328. 60. Hsieh, H.-J., et al., Evaluation of three force-position hybrid control methods for a robot-based biological joint-testing system. Biomedical engineering online, 2016. 15(1): p. 62. 61. Ericson, M.O. and R. Nisell, Tibiofemoral joint forces during ergometer cycling. The American Journal of Sports Medicine, 1986. 14(4): p. 285-290. 62. Henning, C.E., M.A. Lynch, and K.R. Glick, An in vivo strain gage study of elongation of the anterior cruciate ligament. The American Journal of Sports Medicine, 1985. 13(1): p. 22-26. 63. Taylor, W.R., et al., Tibio-femoral loading during human gait and stair climbing. Journal of Orthopaedic Research, 2004. 22(3): p. 625-632. 64. Miyazaki, T., et al., Dynamic load at baseline can predict radiographic disease progression in medial compartment knee osteoarthritis. Annals of the Rheumatic Diseases, 2002. 61(7): p. 617-622. 65. Hunter, D.J., et al., Evolution of semi-quantitative whole joint assessment of knee OA: MOAKS (MRI Osteoarthritis Knee Score). Osteoarthritis and Cartilage, 2011. 19(8): p. 990-1002. | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/70887 | - |
dc.description.abstract | 自行車在現代人之日常生活中佔有很大的重要性,除了具有交通運輸、休閒娛樂及運動健身等功能外,在臨床上更被廣泛運用於下肢傷害之復健工具。而在進行復健之過程中很少會有人注意到座椅高度對於膝關節的影響。膝關節是下肢運動使用率最高的關節,除了肌肉自主收縮的控制外,韌帶與軟骨在不同運動狀態中更是扮演對關節穩定性的重要角色,因此關節軟組織的傷害是相當常見的。
由於電腦技術之快速演進,早期侵入式量測有諸多限制,因此有限元素法被大量運用在非侵入式量測活體膝關節軟組織力學的研究。有限元素分析的主要架構分別由幾何模型、材料參數以及邊界條件為三大主軸。客制化活體膝關節之幾何模型主要來自電腦斷層掃描與核磁共振造影之三維影像重建,韌帶與軟骨之材料參數分別根據KT-2000膝關節鬆弛度量測儀之量測實驗與文獻結果,邊界條件則為動態X光量測之膝關節骨頭相對運動學資訊。經由改良驗證過之有限元素分析流程,運用在活體自行車運動實驗下,探討不同座椅高度下自行車踩踏時韌帶與軟骨之負荷情形,並提供未來膝關節複雜力學分析之應用。 根據本研究分析之結果,在自行車運動過程中,軟組織主要負荷為後十字韌帶與內側軟骨面。韌帶負荷的分佈在膝關節伸直期遞減,膝關節彎曲期遞增;軟骨面負荷的分佈有兩個負荷峰值發生(大致上接近曲柄角度45度和300度),最大接觸負荷為體重的1~2倍。在進行自行車運動之復健,座椅高度對於韌帶相對之影響較有限,反而是對於軟骨面之負荷有較大之影響;對於軟骨面之負荷在高座椅自行車踩踏時,在接近上死點時有較多軟骨面之貢獻。由臨床角度來看,對於前十字韌帶受損之患者較推薦以高座椅之踩踏方式進行復健,但不建議後十字韌帶損傷之患者使用此復健方法;而對於軟骨面損傷之患者較推薦將座椅高度降低進行此復健,但需額外注意內側軟骨之受力,避免過多負載。 | zh_TW |
dc.description.abstract | Cycling plays an important role in our daily life. It is also widely applied to the rehabilitation of the lower limb, but it is seldom being discussed of how the seat heights effect the knee. The knee ligaments and articular cartilages have a great influence on the knee joint stability and mobility. Knee joint is the highly used hinge joint in the human body, and its injuries to soft tissues is occurred commonly.
Finite element method is widely used to study in vivo joint soft tissue mechanics in the non-invasive measurement. Geometry model, material parameters of soft tissues and boundary condition composed the whole finite element method. The geometry model comes from the three-dimensional reconstruction of the computed tomography and magnetic resonance imaging scan. Material parameters of soft tissues referred to the KT-2000 arthrometer and literature. The boundary condition is captured from the dynamic fluoroscopy system. The objective of this study was to analyze the loading of the in vivo knee ligaments and articular cartilages in different seat heights with the validated finite element analysis procedure, hoping to provide a better used of mechanical analysis of the complicated soft tissues in knee in the future. According to the finite element analysis results in cycling, the main representative of the loadings in soft tissues were PCL and the medial cartilage. The ligament loadings decrease along of the knee extension and increase along of the knee flexion. The articular cartilage loadings show two peaks among crank angle of 45° and 300° and the maximum contact load is 1-2 times of the body weight. While cycling, the effect of seat height is limited in ligament loadings but more in the cartilage loadings. In the high-seated pedaling, articular cartilages had contributed more near the top dead end of the pedaling cycle. From the clinical point of view, the patients with ACL injury are recommended to pedaling with the high seat but the patients with PCL injury are not appropriated for this rehabilitation. And the low-seated pedaling is suitable for the patients with knee osteoarthritis but be aware of the loadings of the medial cartilage. | en |
dc.description.provenance | Made available in DSpace on 2021-06-17T04:42:28Z (GMT). No. of bitstreams: 1 ntu-107-R05548041-1.pdf: 9924101 bytes, checksum: b5687e17f2b452b661e61aa6abb1a164 (MD5) Previous issue date: 2018 | en |
dc.description.tableofcontents | 摘要 I
Abstract II 目錄 IV 圖目錄 VI 表目錄 XI 第一章 緒論 1 第一節 研究背景 1 第二節 膝關節之解剖學 4 第三節 膝關節之運動學 6 第四節 膝關節韌帶之組成與力學性質 7 第五節 膝關節軟骨之組成與力學性質 9 第六節 文獻回顧 12 膝關節動力學之研究 12 膝關節數學分析模型 16 膝關節之自行車運動 22 第七節 研究目的 27 第八節 假說 28 第二章 實驗材料與方法 29 第一節 試體膝關節驗證實驗 29 實驗對象與儀器設備 30 實驗流程 32 試體驗證流程 33 第二節 活體膝關節自行車運動實驗 35 實驗對象與儀器設備 35 活體膝關節穩定度測試實驗 38 活體膝關節三維運動學資訊比對流程 39 第三節 統計分析 41 第三章 膝關節之有限元素分析 42 第一節 膝關節之三維幾何模型 44 第二節 膝關節骨頭與軟組織之材料性質 49 第三節 膝關節骨頭邊界條件 53 第四章 研究結果 56 第一節 活體膝關節韌帶材料參數測試結果 56 第二節 自行車運動過程膝關節韌帶之有限元素分析結果 62 自行車不同座椅高低踩踏過程中之韌帶負荷情形 62 第三節 自行車運動過程膝關節軟骨之有限元素分析結果 70 自行車不同座椅高低踩踏過程中之軟骨負荷情形 70 第五章 討論 78 第一節 膝關節踩踏過程之韌帶負荷 78 第二節 膝關節踩踏過程之軟骨負荷 79 第三節 自行車運動過程高低座椅對膝關節軟組織之影響 80 高低座椅對韌帶負荷之比較 80 高低座椅對軟骨面負荷之比較 81 第六章 總結 82 第一節 結論 82 第二節 誤差與未來展望 83 參考文獻 85 | |
dc.language.iso | zh-TW | |
dc.title | 自行車踩踏時膝關節韌帶與軟骨受力之計算:座椅高低之影響 | zh_TW |
dc.title | Calculation of Knee Ligament and Cartilage Loading During Pedaling: Effects of Seat Height | en |
dc.type | Thesis | |
dc.date.schoolyear | 106-2 | |
dc.description.degree | 碩士 | |
dc.contributor.oralexamcommittee | 陳文斌,陳祥和,林正忠 | |
dc.subject.keyword | 有限元素法,自行車運動,座椅高度,膝關節韌帶,膝關節軟骨, | zh_TW |
dc.subject.keyword | Finite element method,Cycling,Seat heights,In vivo knee ligament,In vivo knee articular cartilage, | en |
dc.relation.page | 89 | |
dc.identifier.doi | 10.6342/NTU201802474 | |
dc.rights.note | 有償授權 | |
dc.date.accepted | 2018-08-06 | |
dc.contributor.author-college | 工學院 | zh_TW |
dc.contributor.author-dept | 醫學工程學研究所 | zh_TW |
顯示於系所單位: | 醫學工程學研究所 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-107-1.pdf 目前未授權公開取用 | 9.69 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。