Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 理學院
  3. 天文物理研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/70874
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor賀曾樸(Paul Ho)
dc.contributor.authorLiang-Yao Wangen
dc.contributor.author王亮堯zh_TW
dc.date.accessioned2021-06-17T04:41:55Z-
dc.date.available2019-08-13
dc.date.copyright2018-08-13
dc.date.issued2018
dc.date.submitted2018-08-06
dc.identifier.citationAdams, F. C., Lada, C. J., & Shu, F. H. 1987, ApJ, 312, 788
Allen, A., Shu, F. H., & Li, Z.-Y. 2003, ApJ, 599, 351
Andre, P., Ward-Thompson, D., & Barsony, M. 1993, ApJ, 406, 122
Arce, H. G., & Goodman, A. A. 2001, ApJ, 551, L171
Bachiller, R. 1996, ARA&A, 34, 111
Bachiller, R., & Tafalla, M. 1999, in NATO Advanced Science Institutes (ASI) Series C, Vol. 540, The Origin of Stars and Planetary Systems, ed. C. J. Lada & N. D. Kylafis (Dordrecht: Kluwer Academic Publishers), 227
Bally, J. 2016, ARA&A, 54, 491
Beckwith, S. V. W., Sargent, A. I., Chini, R. S., & Guesten, R. 1990, AJ, 99, 924
Bontemps, S., Andre, P., Terebey, S., & Cabrit, S. 1996, A&A, 311, 858
Cabrit, S., Raga, A., & Gueth, F. 1997, in IAU Symposium, Vol. 182, Herbig-Haro Flows and the Birth of Stars, ed. B. Reipurth & C. Bertout, 163–180
Canto, J., & Raga, A. C. 1991, ApJ, 372, 646
Carrasco-González, C., Rodríguez, L. F., Anglada, G., et al. 2010, Science, 330, 1209
Chandrasekhar, S. 1961, Hydrodynamic and hydromagnetic stability
Chen, H., Myers, P. C., Ladd, E. F., & Wood, D. O. S. 1995, ApJ, 445, 377
Ching, T.-C., Lai, S.-P., Zhang, Q., et al. 2016, ApJ, 819, 159
Codella, C., Cabrit, S., Gueth, F., et al. 2007, A&A, 462, L53
Davis, C. J., Chrysostomou, A., Hatchell, J., et al. 2010, MNRAS, 405, 759
Dayou, F., & Balança, C. 2006, A&A, 459, 297
Dent, W. R. F., Matthews, H. E., & Ward-Thompson, D. 1998, MNRAS, 301, 1049
Downes, T. P., & Cabrit, S. 2003, A&A, 403, 135
Downes, T. P., & Ray, T. P. 1999, A&A, 345, 977
Dunham, M. M., Stutz, A. M., Allen, L. E., et al. 2014, Protostars and Planets VI, 195
Flower, D. R. 2001, Journal of Physics B Atomic Molecular Physics, 34, 2731
Frank, A., Jones, T. W., Ryu, D., & Gaalaas, J. B. 1996, ApJ, 460, 777
Frank, A., Ray, T. P., Cabrit, S., et al. 2014, Protostars and Planets VI, 451
Goldreich, P., & Kwan, J. 1974, ApJ, 189, 441
Goldreich, P., & Kylafis, N. D. 1981, ApJ, 243, L75
—. 1982, ApJ, 253, 606
Gueth, F., & Guilloteau, S. 1999, A&A, 343, 571
Gusdorf, A., Cabrit, S., Flower, D. R., & Pineau Des Forêts, G. 2008, A&A, 482, 809
Haro, G. 1952, ApJ, 115, 572
Herbig, G. H. 1951, ApJ, 113, 697
Hirano, N., Ho, P. P. T., Liu, S.-Y., et al. 2010, ApJ, 717, 58
Hirano, N., Liu, S.-Y., Shang, H., et al. 2006, ApJ, 636, L141
Ho, P. T. P., Moran, J. M., & Lo, K. Y. 2004, ApJ, 616, L1
Kenyon, S. J., Calvet, N., & Hartmann, L. 1993, ApJ, 414, 676
Konigl, A., & Pudritz, R. E. 2000, Protostars and Planets IV, 759
Krasnopolsky, R., Li, Z.-Y., & Shang, H. 2010, ApJ, 716, 1541
Kwan, J., & Scoville, N. 1976, ApJ, 210, L39
Lada, C. J. 1987, in IAU Symposium, Vol. 115, Star Forming Regions, ed. M. Peimbert & J. Jugaku, 1–17
Lee, C.-F., Hirano, N., Palau, A., et al. 2009, ApJ, 699, 1584
Lee, C.-F., Hirano, N., Zhang, Q., et al. 2015, ApJ, 805, 186
Lee, C.-F., Ho, P. T. P., Hirano, N., et al. 2007a, ApJ, 659, 499
Lee, C.-F., Ho, P. T. P., Palau, A., et al. 2007b, ApJ, 670, 1188
Lee, C.-F., Mundy, L. G., Reipurth, B., Ostriker, E. C., & Stone, J. M. 2000, ApJ, 542, 925
Lee, C.-F., Rao, R., Ching, T.-C., et al. 2014, ApJ, 797, L9
Lee, C.-F., Stone, J. M., Ostriker, E. C., & Mundy, L. G. 2001, ApJ, 557, 429
Lefloch, B., Cabrit, S., Busquet, G., et al. 2012, ApJ, 757, L25
Li, Z.-Y., & Shu, F. H. 1996, ApJ, 472, 211
Masson, C. R., & Chernin, L. M. 1992, ApJ, 387, L47
Matzner, C. D., & McKee, C. F. 1999, ApJ, 526, L109
Meyers-Rice, B. A., & Lada, C. J. 1991, ApJ, 368, 445
Myers, P. C., & Ladd, E. F. 1993, ApJ, 413, L47
Nisini, B., Codella, C., Giannini, T., & Richer, J. S. 2002, A&A, 395, L25
Nisini, B., Codella, C., Giannini, T., et al. 2007, A&A, 462, 163
Palau, A., Ho, P. T. P., Zhang, Q., et al. 2006, ApJ, 636, L137
Raga, A., & Cabrit, S. 1993, A&A, 278, 267
Raga, A. C., Binette, L., & Canto, J. 1990, ApJ, 360, 612
Richer, J. S., Shepherd, D. S., Cabrit, S., Bachiller, R., & Churchwell, E. 2000, Protostars and Planets IV, 867
Rosen, A., Hardee, P. E., Clarke, D. A., & Johnson, A. 1999, ApJ, 510, 136
Santiago-García, J., Tafalla, M., Johnstone, D., & Bachiller, R. 2009, A&A, 495, 169
Sault, R. J., Staveley-Smith, L., & Brouw, W. N. 1996, A&AS, 120, 375
Schilke, P., Walmsley, C. M., Pineau des Forets, G., & Flower, D. R. 1997, A&A, 321, 293
Schöier, F. L., Jørgensen, J. K., van Dishoeck, E. F., & Blake, G. A. 2004, A&A, 418, 185
Schöier, F. L., van der Tak, F. F. S., van Dishoeck, E. F., & Black, J. H. 2005, A&A, 432, 369
Scoville, N. Z., Carlstrom, J. E., Chandler, C. J., et al. 1993, PASP, 105, 1482
Shang, H., Allen, A., Li, Z.-Y., et al. 2006, ApJ, 649, 845
Shu, F., Najita, J., Ostriker, E., et al. 1994, ApJ, 429, 781
Shu, F. H., Adams, F. C., & Lizano, S. 1987, ARA&A, 25, 23
Shu, F. H., Najita, J., Ostriker, E. C., & Shang, H. 1995, ApJ, 455, L155
Shu, F. H., Najita, J. R., Shang, H., & Li, Z.-Y. 2000, Protostars and Planets IV, 789
Shu, F. H., Ruden, S. P., Lada, C. J., & Lizano, S. 1991, ApJ, 370, L31
Smith, M. D., Suttner, G., & Yorke, H. W. 1997, A&A, 323, 223
Snell, R. L., Loren, R. B., & Plambeck, R. L. 1980, ApJ, 239, L17
Stone, J. M., Hawley, J. F., Evans, C. R., & Norman, M. L. 1992, ApJ, 388, 415
Stone, J. M., & Norman, M. L. 1993, ApJ, 413, 198
Surdej, J. 1977, A&A, 60, 303
Tafalla, M. 1993, PhD thesis, California University
Tafalla, M., Santiago, J., Johnstone, D., & Bachiller, R. 2004, A&A, 423, L21
Tafalla, M., Santiago-García, J., Hacar, A., & Bachiller, R. 2010, A&A, 522, A91
Tafalla, M., Su, Y.-N., Shang, H., et al. 2017, A&A, 597, A119
Wang, L.-Y., Shang, H., Krasnopolsky, R., & Chiang, T.-Y. 2015, ApJ, 815, 39
Wang, L.-Y., Shang, H., Su, Y.-N., et al. 2014, ApJ, 780, 49
Wernli, M., Valiron, P., Faure, A., et al. 2006, A&A, 446, 367
Wu, Y., Wei, Y., Zhao, M., et al. 2004, A&A, 426, 503
Zhang, Q., & Zheng, X. 1997, ApJ, 474, 719
Ziurys, L. M., Friberg, P., & Irvine, W. M. 1989, ApJ, 343, 201
Zuckerman, B., Kuiper, T. B. H., & Rodriguez Kuiper, E. N. 1976, ApJ, 209, L137
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/70874-
dc.description.abstract源自第零類原恆星系統的分子外流攜帶著關於早期恆星形成過程的訊息。這些年輕外流的特徵是之一是具有「極高速噴流」和「低速殼層」的雙重組成,而此構成可以自然地用整合風模型(Shang et al. 2006)解釋。在此模型中,高速噴流的部分是源自磁化風自身在軸上的高密度分佈,而低速殼層的部分則是周圍被風推開的物質積聚而成。在這個基本框架之下,我們利用數值模擬實驗來增進理解並且計算分子發射譜線來更真實的比較模擬結果與觀測。
為了探討高溫的風在低溫環境中的傳播,我們在模擬中追蹤源自風的物質的分佈並依此進行「雙溫度」的模擬。結果顯示當磁場夠強時,即使在高溫之下高速噴流的部分仍可以維持其準直型態,否則將會因為熱壓力的作用而變得彌散。我們也發現周圍包層物質中的極向磁場能幫助抑制風與環境交互作用邊界上不穩定性的發展,進而造成較平直的低速殼層。
我們計算分子發射譜線的合成影象、位置-速度表、以及光譜,而 CO J=2-1 譜線的影像清楚的表現出極高速噴流和低速殼層的雙組成。模型的質量-速度分佈表之冪次法則指數大約落在 1 到 3 之間,我們發現其大小和風的磁場強度有所關聯。
我們分析在第零類原恆星系統 IRAS 04166+2706 噴流中觀測到的特殊鋸齒狀速度分佈,並且提出以球狀風的速度場和軸上高密度物質分佈的方式來解釋其成因。在此假設之下鋸齒特徵的斜率會自然地隨距離改變,正如觀測結果所示。當假設分子外流與視線的夾角為 52 度時,模型預側的速度分佈與觀測基本符合。
zh_TW
dc.description.abstractMolecular outflows associated with the youngest Class 0 protostars can bear clues of the early protostellar systems in the star formation process. These young outflows are characterized by dual components of extremely high velocity jets and low-velocity cavities, which are naturally understood in context of the unified wind model of Shang et al. 2006. The jet and cavity features are associated with the intrinsic density concentration of the magnetized primary wind and the swept-up ambient gas, respectively. Based on this framework, we develop understanding through numerical experiments and construct synthetic line emissions to bridge the gap between theory and observation.
By using a wind tracer field, we employ a two-temperature scheme to study the problem of a warm wind running into a cold ambient. Our exploration shows that the jet can be well maintained even at a high temperature for a sufficiently magnetized wind, but can be otherwise diffused. We also find that the presence of poloidal magnetic field in the ambient mass can help suppress instabilities at the wind-ambient interface to produce a less corrugated shell boundary.
Synthetic images, position-velocity diagrams, and spectra for molecular transition lines are presented, and the dual jet and shell components are clearly seen in CO J=2-1. The model power-law spectral index γ of the mass-velocity relation (m ~ v^-γ) falls in the range of ~1 to 3, and a dependency on the wind magnetization is revealed.
We analyze the observed sawtooth-like velocity pattern of the Class 0 IRAS 04166+2706 outflow and propose that a spherical wind-like velocity field with mass concentration near axis could underly the pattern. The systematic change of the teeth slope with distance is a natural consequence in this case, and the overall pattern is consistently explained with an inclination angle of ~52 degree.
en
dc.description.provenanceMade available in DSpace on 2021-06-17T04:41:55Z (GMT). No. of bitstreams: 1
ntu-107-D00244001-1.pdf: 9721189 bytes, checksum: bb18b4e1ea866755b2087a16a4e0a3bf (MD5)
Previous issue date: 2018
en
dc.description.tableofcontents論文口試委員審定書ii
誌謝 v
摘要 vii
Abstract ix
1 Introduction 1
1.1 Evolutionary Stages in Isolated Low-Mass Star Formation . . . . . . . . 1
1.2 Mass Outflow Phenomena from Young Stars . . . . . . . . . . . . . . . . 3
1.3 Class 0 Molecular Outflows . . . . . . . . . . . . . . . . . . . . . . . . 4
1.4 Motivation and Approaches of the Study . . . . . . . . . . . . . . . . . . 5
2 A Two-Temperature Model of Magnetized Protostellar Outflows 9
2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.2 Model Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.2.1 Asymptotic Structure of Magnetocentrifugal Winds . . . . . . . . 11
2.2.2 Singular Isothermal Toroids . . . . . . . . . . . . . . . . . . . . 12
2.3 Simulation Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.4 Numerical Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.4.1 Basic Features . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.4.2 The Joint Effect of Wind Temperature and Bϕ . . . . . . . . . . . 17
2.4.3 The Role of Ambient Poloidal Fields . . . . . . . . . . . . . . . 23
2.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
2.5.1 Implications on the Jet and Shell . . . . . . . . . . . . . . . . . . 27
2.5.2 Instability and Mixing Between Wind and Toroid . . . . . . . . . 29
2.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
3 Synthetic Observations of Youngest Protostellar Outflows 39
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
3.2 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
3.2.1 Two-Temperature Wind and Toroids . . . . . . . . . . . . . . . . 43
3.2.2 Synthetic Imaging . . . . . . . . . . . . . . . . . . . . . . . . . 48
3.3 Result . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
3.3.1 Column Density Distributions . . . . . . . . . . . . . . . . . . . 52
3.3.2 Synthetic Channel Maps . . . . . . . . . . . . . . . . . . . . . . 54
3.3.3 Synthetic Position–Velocity Diagrams . . . . . . . . . . . . . . . 59
3.3.4 Synthetic Spectra . . . . . . . . . . . . . . . . . . . . . . . . . . 61
3.3.5 Mass–Velocity Relation . . . . . . . . . . . . . . . . . . . . . . 62
3.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
3.4.1 Signatures of Temperature and Magnetic Fields . . . . . . . . . . 66
3.4.2 Mass-Velocity Relation Revisited . . . . . . . . . . . . . . . . . 68
3.4.3 Velocity Distribution of the Swept-Up Mass in Presence of Magnetic
Field . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
3.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
4 Molecular Jet of IRAS 04166+2706 81
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
4.2 Observations and Data Reduction . . . . . . . . . . . . . . . . . . . . . 83
4.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
4.3.1 The 350 GHz Continuum . . . . . . . . . . . . . . . . . . . . . . 85
4.3.2 Overall Morphology of the CO J = 3–2 Molecular Outflow . . . 87
4.3.3 The Missing Flux . . . . . . . . . . . . . . . . . . . . . . . . . . 89
4.3.4 The EHV Jet . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90
4.3.5 The Low-Velocity Conical Shells . . . . . . . . . . . . . . . . . 98
4.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101
4.4.1 Large Velocity Gradient Analysis of EHV Jet . . . . . . . . . . . 101
4.4.2 Uncertainties in The Analysis of Offsets in The Peak Positions . . 105
4.4.3 I04166, L1448C, and HH 211 Outflows . . . . . . . . . . . . . . 108
4.5 Summary and Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . 110
5 Ejection History of IRAS 04166+2706 Molecular Jet 113
5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114
5.2 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116
5.2.1 Molecular Outflow IRAS 04166+2706 and The Sawtooth Velocity
Pattern . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116
5.2.2 The Unified Wind Model . . . . . . . . . . . . . . . . . . . . . . 117
5.3 Sawtooth Velocity Pattern: a Spherical Wind Interpretation . . . . . . . . 120
5.3.1 An Intuitive Explanation . . . . . . . . . . . . . . . . . . . . . . 120
5.3.2 A Quantitative Description . . . . . . . . . . . . . . . . . . . . . 123
5.4 Numerical Simulations of Variable Velocity Wind . . . . . . . . . . . . . 127
5.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134
5.5.1 Wind or Jet . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134
5.5.2 Implications on Velocity History . . . . . . . . . . . . . . . . . . 136
5.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138
6 Summary 139
A Velocity Pattern of the Spherical Wind Model 143
Bibliography 147
dc.language.isoen
dc.subjectIRAS 04166+2706zh_TW
dc.subject運動學與動力學zh_TW
dc.subject噴流與風zh_TW
dc.subject恆星形成zh_TW
dc.subjectISM: individual objects (IRAS 04166+2706)en
dc.subjectISM: jets and outflowsen
dc.subjectISM: kinematics and dynamicsen
dc.subjectstars: formationen
dc.title年輕分子噴流:理論模型與觀測zh_TW
dc.titleYoungest Molecular Jets and Outflows: Theoretical Modeling and Observationsen
dc.typeThesis
dc.date.schoolyear106-2
dc.description.degree博士
dc.contributor.coadvisor尚賢(Hsien Shang)
dc.contributor.oralexamcommittee李太楓(Typhoon Lee),辜品高(Pin-Gao Gu),管一政(Yi-Jehng Kuan)
dc.subject.keywordIRAS 04166+2706,噴流與風,運動學與動力學,恆星形成,zh_TW
dc.subject.keywordISM: individual objects (IRAS 04166+2706),ISM: jets and outflows,ISM: kinematics and dynamics,stars: formation,en
dc.relation.page151
dc.identifier.doi10.6342/NTU201802508
dc.rights.note有償授權
dc.date.accepted2018-08-06
dc.contributor.author-college理學院zh_TW
dc.contributor.author-dept天文物理研究所zh_TW
顯示於系所單位:天文物理研究所

文件中的檔案:
檔案 大小格式 
ntu-107-1.pdf
  未授權公開取用
9.49 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved