Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 理學院
  3. 物理學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/70859
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor陳永芳(Yang-Fang Chen)
dc.contributor.authorShih-Yao Linen
dc.contributor.author林詩堯zh_TW
dc.date.accessioned2021-06-17T04:41:18Z-
dc.date.available2020-08-08
dc.date.copyright2018-08-08
dc.date.issued2018
dc.date.submitted2018-08-06
dc.identifier.citation(1) Robinson, B. H., E-Waste: An Assessment of Global Production and Environmental Impacts. Sci. Total Environ. 2009, 408, 183-191.
(2) Fu, K. K.; Wang, Z.; Dai, J.; Carter, M.; Hu, L., Transient Electronics: Materials and Devices. Chem. Mater. 2016, 28, 3527-3539.
(3) Gao, Y.; Zhang, Y.; Wang, X.; Sim, K.; Liu, J.; Chen, J.; Feng, X.; Xu, H.; Yu, C., Moisture-Triggered Physically Transient Electronics. Sci. Adv. 2017, 3, e1701222.
(4) Hwang, S. W.; Song, J. K.; Huang, X.; Cheng, H.; Kang, S. K.; Kim, B. H.; Kim, J. H.; Yu, S.; Huang, Y.; Rogers, J. A., High‐Performance Biodegradable/Transient Electronics on Biodegradable Polymers. Adv. Mater. 2014, 26, 3905-3911.
(5) Shi, X.; Liao, Y.-M.; Lin, H.-Y.; Tsao, P.-W.; Wu, M.-J.; Lin, S.-Y.; Hu, H.-H.; Wang, Z.; Lin, T.-Y.; Lai, Y.-C., Dissolvable and Recyclable Random Lasers. ACS Nano 2017, 11, 7600-7607.
(6) Kang, S. K.; Hwang, S. W.; Yu, S.; Seo, J. H.; Corbin, E. A.; Shin, J.; Wie, D. S.; Bashir, R.; Ma, Z.; Rogers, J. A., Biodegradable Thin Metal Foils and Spin‐on Glass Materials for Transient Electronics. Adv. Funct. Mater. 2015, 25, 1789-1797.
(7) Hwang, S.-W.; Lee, C. H.; Cheng, H.; Jeong, J.-W.; Kang, S.-K.; Kim, J.-H.; Shin, J.; Yang, J.; Liu, Z.; Ameer, G. A., Biodegradable Elastomers and Silicon Nanomembranes/Nanoribbons for Stretchable, Transient Electronics, and Biosensors. Nano Lett. 2015, 15, 2801-2808.
(8) Kang, S. K.; Hwang, S. W.; Cheng, H.; Yu, S.; Kim, B. H.; Kim, J. H.; Huang, Y.; Rogers, J. A., Dissolution Behaviors and Applications of Silicon Oxides and Nitrides in Transient Electronics. Adv. Funct. Mater. 2014, 24, 4427-4434.
(9) Hwang, S.-W.; Park, G.; Edwards, C.; Corbin, E. A.; Kang, S.-K.; Cheng, H.; Song, J.-K.; Kim, J.-H.; Yu, S.; Ng, J., Dissolution Chemistry and Biocompatibility of Single-Crystalline Silicon Nanomembranes and Associated Materials for Transient Electronics. ACS Nano 2014, 8, 5843-5851.
(10) Acar, H.; Çınar, S.; Thunga, M.; Kessler, M. R.; Hashemi, N.; Montazami, R., Study of Physically Transient Insulating Materials as a Potential Platform for Transient Electronics and Bioelectronics. Adv. Funct. Mater. 2014, 24, 4135-4143.
(11) Kim, D.-H.; Viventi, J.; Amsden, J. J.; Xiao, J.; Vigeland, L.; Kim, Y.-S.; Blanco, J. A.; Panilaitis, B.; Frechette, E. S.; Contreras, D., Dissolvable Films of Silk Fibroin for Ultrathin Conformal Bio-Integrated Electronics. Nat. Mater. 2010, 9, 511-517.
(12) Hwang, S.-W.; Tao, H.; Kim, D.-H.; Cheng, H.; Song, J.-K.; Rill, E.; Brenckle, M. A.; Panilaitis, B.; Won, S. M.; Kim, Y.-S., A Physically Transient Form of Silicon Electronics. Science 2012, 337, 1640-1644.
(13) Hwang, S. W.; Kim, D. H.; Tao, H.; Kim, T. i.; Kim, S.; Yu, K. J.; Panilaitis, B.; Jeong, J. W.; Song, J. K.; Omenetto, F. G., Materials and Fabrication Processes for Transient and Bioresorbable High‐Performance Electronics. Adv. Funct. Mater. 2013, 23, 4087-4093.
(14) Bonaccorso, F.; Sun, Z.; Hasan, T.; Ferrari, A., Graphene Photonics and Optoelectronics. Nat. Photonics 2010, 4, 611.
(15) Zhang, Y.; Tan, Y.-W.; Stormer, H. L.; Kim, P., Experimental Observation of the Quantum Hall Effect and Berry's Phase in Graphene. Nature 2005, 438, 201.
(16) Zhu, Y.; Murali, S.; Cai, W.; Li, X.; Suk, J. W.; Potts, J. R.; Ruoff, R. S., Graphene and Graphene Oxide: Synthesis, Properties, and Applications. Adv. Mater. 2010, 22, 3906-3924.
(17) Geim, A. K., Graphene: Status and Prospects. Science 2009, 324, 1530-1534.
(18) Geim, A. K.; Novoselov, K. S., The Rise of Graphene. Nat. Mater. 2007, 6, 183.
(19) Nair, R. R.; Blake, P.; Grigorenko, A. N.; Novoselov, K. S.; Booth, T. J.; Stauber, T.; Peres, N. M.; Geim, A. K., Fine Structure Constant Defines Visual Transparency of Graphene. Science 2008, 320, 1308-1308.
(20) Novoselov, K. S.; Geim, A. K.; Morozov, S. V.; Jiang, D.; Katsnelson, M. I.; Grigorieva, I. V.; Dubonos, S. V.; Firsov, A. A., Two-Dimensional Gas of Massless Dirac Fermions in Graphene. Nature 2006, 438, 197.
(21) Yankowitz, M.; Xue, J.; Cormode, D.; Sanchez-Yamagishi, J. D.; Watanabe, K.; Taniguchi, T.; Jarillo-Herrero, P.; Jacquod, P.; LeRoy, B. J., Emergence of Superlattice Dirac Points in Graphene on Hexagonal Boron Nitride. Nat. Phys. 2012, 8, 382.
(22) Konstantatos, G.; Badioli, M.; Gaudreau, L.; Osmond, J.; Bernechea, M.; De Arquer, F. P. G.; Gatti, F.; Koppens, F. H., Hybrid Graphene–Quantum Dot Phototransistors with Ultrahigh Gain. Nat. Nanotechnol. 2012, 7, 363.
(23) Haider, G.; Roy, P.; Chiang, C. W.; Tan, W. C.; Liou, Y. R.; Chang, H. T.; Liang, C. T.; Shih, W. H.; Chen, Y. F., Electrical‐Polarization‐Induced Ultrahigh Responsivity Photodetectors Based on Graphene and Graphene Quantum Dots. Adv. Funct. Mater. 2016, 26, 620-628.
(24) Chiang, C.-W.; Haider, G.; Tan, W.-C.; Liou, Y.-R.; Lai, Y.-C.; Ravindranath, R.; Chang, H.-T.; Chen, Y.-F., Highly Stretchable and Sensitive Photodetectors Based on Hybrid Graphene and Graphene Quantum Dots. ACS Appl. Mater. Interfaces 2016, 8, 466-471.
(25) Xu, T.; Zhang, L.; Cheng, H.; Zhu, Y., Significantly Enhanced Photocatalytic Performance of Zno Via Graphene Hybridization and the Mechanism Study. Appl. Catal. B- Environ. 2011, 101, 382-387.
(26) Xu, H.; Wu, J.; Feng, Q.; Mao, N.; Wang, C.; Zhang, J., High Responsivity and Gate Tunable Graphene‐Mos2 Hybrid Phototransistor. Small 2014, 10, 2300-2306.
(27) Sun, Z.; Liu, Z.; Li, J.; Tai, G. a.; Lau, S. P.; Yan, F., Infrared Photodetectors Based on Cvd‐Grown Graphene and Pbs Quantum Dots with Ultrahigh Responsivity. Adv. Mater. 2012, 24, 5878-5883.
(28) Tan, W. C.; Shih, W. H.; Chen, Y. F., A Highly Sensitive Graphene‐Organic Hybrid Photodetector with a Piezoelectric Substrate. Adv. Funct. Mater. 2014, 24, 6818-6825.
(29) Hong, W.; Xu, Y.; Lu, G.; Li, C.; Shi, G., Transparent Graphene/Pedot–Pss Composite Films as Counter Electrodes of Dye-Sensitized Solar Cells. Electrochem. Commun. 2008, 10, 1555-1558.
(30) Chen, S.-Y.; Lu, Y.-Y.; Shih, F.-Y.; Ho, P.-H.; Chen, Y.-F.; Chen, C.-W.; Chen, Y.-T.; Wang, W.-H., Biologically Inspired Graphene-Chlorophyll Phototransistors with High Gain. Carbon 2013, 63, 23-29.
(31) Syafinar, R.; Gomesh, N.; Irwanto, M.; Fareq, M.; Irwan, Y., Chlorophyll Pigments as Nature Based Dye for Dye-Sensitized Solar Cell (Dssc). Energy Procedia 2015, 79, 896-902.
(32) Choi, S.; Lee, H.; Ghaffari, R.; Hyeon, T.; Kim, D. H., Recent Advances in Flexible and Stretchable Bio‐Electronic Devices Integrated with Nanomaterials. Adv. Mater. 2016, 28, 4203-4218.
(33) Xi, H.; Chen, D.; Lv, L.; Zhong, P.; Lin, Z.; Chang, J.; Wang, H.; Wang, B.; Ma, X.; Zhang, C., High Performance Transient Organic Solar Cells on Biodegradable Polyvinyl Alcohol Composite Substrates. RSC Adv. 2017, 7, 52930-52937.
(34) Jin, S. H.; Kang, S.-K.; Cho, I.-T.; Han, S. Y.; Chung, H. U.; Lee, D. J.; Shin, J.; Baek, G. W.; Kim, T.-i.; Lee, J.-H., Water-Soluble Thin Film Transistors and Circuits Based on Amorphous Indium–Gallium–Zinc Oxide. ACS Appl. Mater. Interfaces 2015, 7, 8268-8274.
(35) Yin, L.; Cheng, H.; Mao, S.; Haasch, R.; Liu, Y.; Xie, X.; Hwang, S. W.; Jain, H.; Kang, S. K.; Su, Y., Dissolvable Metals for Transient Electronics. Adv. Funct. Mater. 2014, 24, 645-658.
(1) Dash, G.; Pattanaik, S. R.; Behera, S., Graphene for Electron Devices: The Panorama of a Decade. IEEE Trans. Electron Devices 2014, 2, 77-104.
(2) Maffucci, A.; Miano, G., Electrical Properties of Graphene for Interconnect Applications. Appl. Sci. 2014, 4, 305-317.
(3) Konstantatos, G.; Badioli, M.; Gaudreau, L.; Osmond, J.; Bernechea, M.; De Arquer, F. P. G.; Gatti, F.; Koppens, F. H., Hybrid Graphene–Quantum Dot Phototransistors with Ultrahigh Gain. Nat. Nanotechnol. 2012, 7, 363.
(4) Chiang, C.-W.; Haider, G.; Tan, W.-C.; Liou, Y.-R.; Lai, Y.-C.; Ravindranath, R.; Chang, H.-T.; Chen, Y.-F., Highly Stretchable and Sensitive Photodetectors Based on Hybrid Graphene and Graphene Quantum Dots. ACS Appl. Mater. Interfaces 2016, 8, 466-471.
(5) Malard, L. M.; Pimenta, M. A.; Dresselhaus, G.; Dresselhaus, M. S., Raman Spectroscopy in Graphene. Physics Reports 2009, 473, 51-87.
(1) Reina, A.; Jia, X.; Ho, J.; Nezich, D.; Son, H.; Bulovic, V.; Dresselhaus, M. S.; Kong, J., Large Area, Few-Layer Graphene Films on Arbitrary Substrates by Chemical Vapor Deposition. Nano Lett. 2008, 9, 30-35.
(2) Haider, G.; Roy, P.; Chiang, C. W.; Tan, W. C.; Liou, Y. R.; Chang, H. T.; Liang, C. T.; Shih, W. H.; Chen, Y. F., Electrical‐Polarization‐Induced Ultrahigh Responsivity Photodetectors Based on Graphene and Graphene Quantum Dots. Adv. Funct. Mater. 2016, 26, 620-628.
(3) Nelson, R. C., Energy Levels in Chlorophyll and Electron Transfer Processes. Photochem. Photobiol. 1968, 8, 441-450.
(4) Guo, W.; Xu, S.; Wu, Z.; Wang, N.; Loy, M.; Du, S., Oxygen‐Assisted Charge Transfer between Zno Quantum Dots and Graphene. Small 2013, 9, 3031-3036.
(5) Soci, C.; Zhang, A.; Xiang, B.; Dayeh, S.; Aplin, D.; Park, J.; Bao, X.; Lo, Y.; Wang, D., Zno Nanowire Uv Photodetectors with High Internal Gain. Nano Lett. 2007, 7, 1003-1009.
(6) Chen, S.-Y.; Lu, Y.-Y.; Shih, F.-Y.; Ho, P.-H.; Chen, Y.-F.; Chen, C.-W.; Chen, Y.-T.; Wang, W.-H., Biologically Inspired Graphene-Chlorophyll Phototransistors with High Gain. Carbon 2013, 63, 23-29.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/70859-
dc.description.abstract隨著科技的快速發展,電子設備在我們的日常生活中已無所不在,也因此帶給人類生活中各個方面的便利。然而,電子垃圾成為一個巨大的環境負擔,造成日益嚴重的生態問題。為了人類的生存,必須發展新的技術來替代傳統生產電子元件的技術。近年來瞬態電子元件技術引起了極大的關注,瞬態裝置能在不同物理條件下,在一定時間內消失的一種電子元件製備技術,這顛覆了人們對電子元件的理解,對於生物醫學及軍事應用將具有非常廣闊的應用前景。在此項研究中,我們展示了在聚乙烯醇基板上使用石墨烯和葉綠素混合物的可溶解環保柔性光感測器。整個裝置具有高光響應度,並且能在一般環境條件下消失在水溶液中。由於石墨烯的高電子遷移率以及葉綠素的高強度吸收形成光子捕捉層,在紅光照明之下,元件具有低於一秒的響應時間和具有高達約200WA-1的光響應度,並且光電流增益高達1000。這個新設計的光感測器幾乎不會產生任何的電子垃圾,對環境影響極小,也使得生態環境永續發展產生前所未有的幫助。zh_TW
dc.description.abstractWith the rapid development of technology, electronic devices have become omnipresent in our daily life as it brought much convenience in every aspect of human activity. Side-by-side, the electronic waste (e-waste) has become a global environmental burden creating an ever-growing ecological problem. For the sustenance of human race, an alternative to the traditional technology must be developed. Along this guideline, the transient device technology in which the devices can physically disappear completely in different environmental conditions has attracted a widespread attention in recent years owing to its emerging application potential spanning from bio-medical to military use. In this work, we demonstrated the first attempt of a dissolvable eco-friendly flexible photodetector using a hybrid of graphene and chlorophyll on poly(vinyl alcohol) substrate. The whole device can physically disappear in aqueous solutions in a time span of ~30 minutes, while it shows a photoresponsivity of ~ 200 AW-1 under ambient conditions. The high carrier mobility of graphene and strong absorption strength of green photon harvesting layer, chlorophyll, result in the photocurrent gain of the device as high as 103 with subsecond response time, under the illumination of red light. The newly designed photodetector shown here yields zero-waste with a minimum impact on the environment, which is very useful for the development of the sustainability of our planet.en
dc.description.provenanceMade available in DSpace on 2021-06-17T04:41:18Z (GMT). No. of bitstreams: 1
ntu-107-R05222005-1.pdf: 2867595 bytes, checksum: 0b25da220dfeedefe5f2e0dc7c8bc037 (MD5)
Previous issue date: 2018
en
dc.description.tableofcontents論文口試委員審定書 I
致謝 II
中文摘要 III
Abstract IV
Contents V
List of Figures VII
Chapter 1 Introduction 1
References 6
Chapter 2 Theoretical Background 12
2.1 Graphene: 2D Material 12
2.2 Hybrid Photodetector 15
2.3 Chlorophyll 17
2.4 Raman Spectroscopy 18
References 22
Chapter 3 Experimental Details 23
3.1 Electrical Characteristics Measurement 23
3.2 Chemical Vapor Deposition System 24
3.3 Thermal Evaporation 26
3.4 PVA Substrate Synthesis 27
3.5 Device Fabrication 29
Chapter 4 Results and Discussion 32
4.1 Dissolution Process 32
4.2 Characteristics of Device 34
4.3 I-V and I-T 36
4.4 Mechanism 39
4.5 Responsivity and Gain of Device Performance 42
4.6 Flexibility and Stability 48
References 48
Chapter 5 Conclusion 51
dc.language.isoen
dc.subject瞬態zh_TW
dc.subject光感測器zh_TW
dc.subject石墨烯zh_TW
dc.subject葉綠素zh_TW
dc.subject光電元件zh_TW
dc.subjectoptoelectronicsen
dc.subjectphotodetectoren
dc.subjectgrapheneen
dc.subjectchlorophyllen
dc.subjecttransienten
dc.title瞬態可撓光感測器zh_TW
dc.titleTransient and Flexible Photodetectorsen
dc.typeThesis
dc.date.schoolyear106-2
dc.description.degree碩士
dc.contributor.oralexamcommittee林泰源(Tai-Yuan Lin),謝馬利歐(Mario Hofmann)
dc.subject.keyword瞬態,光感測器,石墨烯,葉綠素,光電元件,zh_TW
dc.subject.keywordtransient,photodetector,graphene,chlorophyll,optoelectronics,en
dc.relation.page51
dc.identifier.doi10.6342/NTU201801667
dc.rights.note有償授權
dc.date.accepted2018-08-06
dc.contributor.author-college理學院zh_TW
dc.contributor.author-dept物理學研究所zh_TW
顯示於系所單位:物理學系

文件中的檔案:
檔案 大小格式 
ntu-107-1.pdf
  未授權公開取用
2.8 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved