Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 醫學院
  3. 牙醫專業學院
  4. 口腔生物科學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/70850
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor張百恩
dc.contributor.authorPing-Zun Liuen
dc.contributor.author劉平尊zh_TW
dc.date.accessioned2021-06-17T04:40:56Z-
dc.date.available2023-09-06
dc.date.copyright2018-09-06
dc.date.issued2018
dc.date.submitted2018-08-06
dc.identifier.citationAdams, L.M., Warburton, M.J. and Hayman, A.R., 2007. Human breast cancer cell lines and tissues express tartrate-resistant acid phosphatase (TRAP). Cell Biol Int. 31, 191-5.
Amarasekara, D.S., Yun, H., Kim, S., Lee, N., Kim, H. and Rho, J., 2018. Regulation of Osteoclast Differentiation by Cytokine Networks. Immune Netw. 18, e8.
Angel, N.Z., Walsh, N., Forwood, M.R., Ostrowski, M.C., Cassady, A.I. and Hume, D.A., 2000. Transgenic mice overexpressing tartrate-resistant acid phosphatase exhibit an increased rate of bone turnover. J Bone Miner Res. 15, 103-10.
Arai, F., Miyamoto, T., Ohneda, O., Inada, T., Sudo, T., Brasel, K., Miyata, T., Anderson, D.M. and Suda, T., 1999. Commitment and differentiation of osteoclast precursor cells by the sequential expression of c-Fms and receptor activator of nuclear factor kappaB (RANK) receptors. J Exp Med. 190, 1741-54.
Armstrong, A.P., Tometsko, M.E., Glaccum, M., Sutherland, C.L., Cosman, D. and Dougall, W.C., 2002. A RANK/TRAF6-dependent signal transduction pathway is essential for osteoclast cytoskeletal organization and resorptive function. J Biol Chem. 277, 44347-56.
Behrens, T.W. and Graham, R.R., 2011. TRAPing a new gene for autoimmunity. Nat Genet. 43, 90-1.
Betancur, R.R., Wiley, E.O., Arratia, G., Acero, A., Bailly, N., Miya, M., Lecointre, G. and Orti, G., 2017. Phylogenetic classification of bony fishes. BMC Evol Biol. 17, 162.
Boyce, B.F., 2013. Advances in the regulation of osteoclasts and osteoclast functions. J Dent Res. 92, 860-7.
Boyle, W.J., Simonet, W.S. and Lacey, D.L., 2003. Osteoclast differentiation and activation. Nature. 423, 337-42.
Bradley, E.W., Ruan, M.M., Vrable, A. and Oursler, M.J., 2008. Pathway crosstalk between Ras/Raf and PI3K in promotion of M-CSF-induced MEK/ERK-mediated osteoclast survival. J Cell Biochem. 104, 1439-51.
Bucay, N., Sarosi, I., Dunstan, C.R., Morony, S., Tarpley, J., Capparelli, C., Scully, S., Tan, H.L., Xu, W., Lacey, D.L., Boyle, W.J. and Simonet, W.S., 1998. osteoprotegerin-deficient mice develop early onset osteoporosis and arterial calcification. Genes Dev. 12, 1260-8.
Cao, H.J., Zheng, L.Z., Wang, N., Wang, L.Y., Li, Y., Li, D., Lai, Y.X., Wang, X.L. and Qin, L., 2015. Src blockage by siRNA inhibits VEGF-induced vascular hyperpemeability and osteoclast activity - an in vitro mechanism study for preventing destructive repair of osteonecrosis. Bone. 74, 58-68.
Chagraoui, H., Tulliez, M., Smayra, T., Komura, E., Giraudier, S., Yun, T., Lassau, N., Vainchenker, W. and Wendling, F., 2003. Stimulation of osteoprotegerin production is responsible for osteosclerosis in mice overexpressing TPO. Blood. 101, 2983-9.
Chatani, M., Takano, Y. and Kudo, A., 2011. Osteoclasts in bone modeling, as revealed by in vivo imaging, are essential for organogenesis in fish. Dev Biol. 360, 96-109.
Childs, L.M., Paschalis, E.P., Xing, L., Dougall, W.C., Anderson, D., Boskey, A.L., Puzas, J.E., Rosier, R.N., O'Keefe, R.J., Boyce, B.F. and Schwarz, E.M., 2002. In vivo RANK signaling blockade using the receptor activator of NF-kappaB:Fc effectively prevents and ameliorates wear debris-induced osteolysis via osteoclast depletion without inhibiting osteogenesis. J Bone Miner Res. 17, 192-9.
de Vrieze, E., Sharif, F., Metz, J.R., Flik, G. and Richardson, M.K., 2011. Matrix metalloproteinases in osteoclasts of ontogenetic and regenerating zebrafish scales. Bone. 48, 704-12.
Dominguez, L.J., Di Bella, G., Belvedere, M. and Barbagallo, M., 2011. Physiology of the aging bone and mechanisms of action of bisphosphonates. Biogerontology. 12, 397-408.
Edsall, S.C. and Franz-Odendaal, T.A., 2010. A quick whole-mount staining protocol for bone deposition and resorption. Zebrafish. 7, 275-80.
Edwards, J.C., Cohen, C., Xu, W. and Schlesinger, P.H., 2006. c-Src control of chloride channel support for osteoclast HCl transport and bone resorption. J Biol Chem. 281, 28011-22.
Faccio, R., Takeshita, S., Zallone, A., Ross, F.P. and Teitelbaum, S.L., 2003. c-Fms and the alphavbeta3 integrin collaborate during osteoclast differentiation. J Clin Invest. 111, 749-58.
Feng, X. and Teitelbaum, S.L., 2013. Osteoclasts: New Insights. Bone Res. 1, 11-26.
Halleen, J.M., Alatalo, S.L., Suominen, H., Cheng, S., Janckila, A.J. and Vaananen, H.K., 2000. Tartrate-resistant acid phosphatase 5b: a novel serum marker of bone resorption. J Bone Miner Res. 15, 1337-45.
Halleen, J.M., Karp, M., Viloma, S., Laaksonen, P., Hellman, J., Kakonen, S.M., Stepan, J.J., Holmes, S., Vaananen, H. and Pettersson, K., 1999. Two-site immunoassays for osteoclastic tartrate-resistant acid phosphatase based on characterization of six monoclonal antibodies. J Bone Miner Res. 14, 464-9.
Hammond, C.L. and Schulte-Merker, S., 2009. Two populations of endochondral osteoblasts with differential sensitivity to Hedgehog signalling. Development. 136, 3991-4000.
Hayman, A.R., Bune, A.J., Bradley, J.R., Rashbass, J. and Cox, T.M., 2000. Osteoclastic tartrate-resistant acid phosphatase (Acp 5): its localization to dendritic cells and diverse murine tissues. J Histochem Cytochem. 48, 219-28.
Hayman, A.R., Jones, S.J., Boyde, A., Foster, D., Colledge, W.H., Carlton, M.B., Evans, M.J. and Cox, T.M., 1996. Mice lacking tartrate-resistant acid phosphatase (Acp 5) have disrupted endochondral ossification and mild osteopetrosis. Development. 122, 3151-62.
Hayman, A.R., Macary, P., Lehner, P.J. and Cox, T.M., 2001. Tartrate-resistant acid phosphatase (Acp 5): identification in diverse human tissues and dendritic cells. J Histochem Cytochem. 49, 675-84.
Hayman, A.R., Warburton, M.J., Pringle, J.A., Coles, B. and Chambers, T.J., 1989. Purification and characterization of a tartrate-resistant acid phosphatase from human osteoclastomas. Biochem J. 261, 601-9.
He, J., Liu, Z., Zheng, Y., Qian, J., Li, H., Lu, Y., Xu, J., Hong, B., Zhang, M., Lin, P., Cai, Z., Orlowski, R.Z., Kwak, L.W., Yi, Q. and Yang, J., 2012. p38 MAPK in myeloma cells regulates osteoclast and osteoblast activity and induces bone destruction. Cancer Res. 72, 6393-402.
Henriksen, K., Karsdal, M.A. and Martin, T.J., 2014. Osteoclast-derived coupling factors in bone remodeling. Calcif Tissue Int. 94, 88-97.
Hofbauer, L.C., Khosla, S., Dunstan, C.R., Lacey, D.L., Boyle, W.J. and Riggs, B.L., 2000. The roles of osteoprotegerin and osteoprotegerin ligand in the paracrine regulation of bone resorption. J Bone Miner Res. 15, 2-12.
Honig, A., Rieger, L., Kapp, M., Krockenberger, M., Eck, M., Dietl, J. and Kammerer, U., 2006. Increased tartrate-resistant acid phosphatase (TRAP) expression in malignant breast, ovarian and melanoma tissue: an investigational study. BMC Cancer. 6, 199.
Hsu, K., Kanki, J.P. and Look, A.T., 2001. Zebrafish myelopoiesis and blood cell development. Curr Opin Hematol. 8, 245-51.
Inoue, J., Ishida, T., Tsukamoto, N., Kobayashi, N., Naito, A., Azuma, S. and Yamamoto, T., 2000. Tumor necrosis factor receptor-associated factor (TRAF) family: adapter proteins that mediate cytokine signaling. Exp Cell Res. 254, 14-24.
Itzstein, C., Coxon, F.P. and Rogers, M.J., 2011. The regulation of osteoclast function and bone resorption by small GTPases. Small GTPases. 2, 117-130.
Izawa, T., Zou, W., Chappel, J.C., Ashley, J.W., Feng, X. and Teitelbaum, S.L., 2012. c-Src links a RANK/alphavbeta3 integrin complex to the osteoclast cytoskeleton. Mol Cell Biol. 32, 2943-53.
Jain, N. and Weinstein, R.S., 2009. Giant osteoclasts after long-term bisphosphonate therapy: diagnostic challenges. Nat Rev Rheumatol. 5, 341-6.
Janckila, A.J., Parthasarathy, R.N., Parthasarathy, L.K., Seelan, R.S., Hsueh, Y.C., Rissanen, J., Alatalo, S.L., Halleen, J.M. and Yam, L.T., 2005. Properties and expression of human tartrate-resistant acid phosphatase isoform 5a by monocyte-derived cells. J Leukoc Biol. 77, 209-18.
Jia, Z.K., Li, H.Y., Liang, Y.L., Potempa, L.A., Ji, S.R. and Wu, Y., 2018. Monomeric C-Reactive Protein Binds and Neutralizes Receptor Activator of NF-kappaB Ligand-Induced Osteoclast Differentiation. Front Immunol. 9, 234.
Jiang, L., Zhang, W., Wei, L., Zhou, Q., Yang, G., Qian, N., Tang, Y., Gao, Y. and Jiang, X., 2018. Early effects of parathyroid hormone on vascularized bone regeneration and implant osseointegration in aged rats. Biomaterials. 179, 15-28.
Jimi, E., Akiyama, S., Tsurukai, T., Okahashi, N., Kobayashi, K., Udagawa, N., Nishihara, T., Takahashi, N. and Suda, T., 1999. Osteoclast differentiation factor acts as a multifunctional regulator in murine osteoclast differentiation and function. J Immunol. 163, 434-42.
Kamano, Y., Watanabe, J., Iida, T., Kondo, T., Okawa, H., Yatani, H., Saeki, M. and Egusa, H., 2018. Binding of PICK1 PDZ domain with calcineurin B regulates osteoclast differentiation. Biochem Biophys Res Commun. 496, 83-88.
Kong, Y.Y., Yoshida, H., Sarosi, I., Tan, H.L., Timms, E., Capparelli, C., Morony, S., Oliveira-dos-Santos, A.J., Van, G., Itie, A., Khoo, W., Wakeham, A., Dunstan, C.R., Lacey, D.L., Mak, T.W., Boyle, W.J. and Penninger, J.M., 1999. OPGL is a key regulator of osteoclastogenesis, lymphocyte development and lymph-node organogenesis. Nature. 397, 315-23.
Lamothe, B., Lai, Y., Xie, M., Schneider, M.D. and Darnay, B.G., 2013. TAK1 is essential for osteoclast differentiation and is an important modulator of cell death by apoptosis and necroptosis. Mol Cell Biol. 33, 582-95.
Lee, Z.H., Lee, S.E., Kim, C.W., Lee, S.H., Kim, S.W., Kwack, K., Walsh, K. and Kim, H.H., 2002. IL-1alpha stimulation of osteoclast survival through the PI 3-kinase/Akt and ERK pathways. J Biochem. 131, 161-6.
Li, X., Udagawa, N., Takami, M., Sato, N., Kobayashi, Y. and Takahashi, N., 2003. p38 Mitogen-activated protein kinase is crucially involved in osteoclast differentiation but not in cytokine production, phagocytosis, or dendritic cell differentiation of bone marrow macrophages. Endocrinology. 144, 4999-5005.
Liu, S., Zhu, W., Li, S., Ma, J., Zhang, H., Li, Z., Zhang, L., Zhang, B., Li, Z., Liang, X. and Shi, W., 2016. Bovine parathyroid hormone enhances osteoclast bone resorption by modulating V-ATPase through PTH1R. Int J Mol Med. 37, 284-92.
Lomaga, M.A., Yeh, W.C., Sarosi, I., Duncan, G.S., Furlonger, C., Ho, A., Morony, S., Capparelli, C., Van, G., Kaufman, S., van der Heiden, A., Itie, A., Wakeham, A., Khoo, W., Sasaki, T., Cao, Z., Penninger, J.M., Paige, C.J., Lacey, D.L., Dunstan, C.R., Boyle, W.J., Goeddel, D.V. and Mak, T.W., 1999. TRAF6 deficiency results in osteopetrosis and defective interleukin-1, CD40, and LPS signaling. Genes Dev. 13, 1015-24.
Lu, X., He, W., Yang, W., Li, J., Han, W., Liu, Q., Zhang, T., Jiang, J., Qin, A. and Qian, Y., 2018. Dual effects of baicalin on osteoclast differentiation and bone resorption. J Cell Mol Med.
Mak, T.W. and Yeh, W.C., 2002. Immunology: a block at the toll gate. Nature. 418, 835-6.
Matsumoto, M., Kogawa, M., Wada, S., Takayanagi, H., Tsujimoto, M., Katayama, S., Hisatake, K. and Nogi, Y., 2004. Essential role of p38 mitogen-activated protein kinase in cathepsin K gene expression during osteoclastogenesis through association of NFATc1 and PU.1. J Biol Chem. 279, 45969-79.
Mattsson, J.P., Schlesinger, P.H., Keeling, D.J., Teitelbaum, S.L., Stone, D.K. and Xie, X.S., 1994. Isolation and reconstitution of a vacuolar-type proton pump of osteoclast membranes. J Biol Chem. 269, 24979-82.
McMichael, B.K., Meyer, S.M. and Lee, B.S., 2010. c-Src-mediated phosphorylation of thyroid hormone receptor-interacting protein 6 (TRIP6) promotes osteoclast sealing zone formation. J Biol Chem. 285, 26641-51.
Milstrey, A., Wieskoetter, B., Hinze, D., Grueneweller, N., Stange, R., Pap, T., Raschke, M. and Garcia, P., 2017. Dose-dependent effect of parathyroid hormone on fracture healing and bone formation in mice. J Surg Res. 220, 327-335.
Miyazaki, T., Katagiri, H., Kanegae, Y., Takayanagi, H., Sawada, Y., Yamamoto, A., Pando, M.P., Asano, T., Verma, I.M., Oda, H., Nakamura, K. and Tanaka, S., 2000. Reciprocal role of ERK and NF-kappaB pathways in survival and activation of osteoclasts. J Cell Biol. 148, 333-42.
Ney, J.T., Fehm, T., Juhasz-Boess, I. and Solomayer, E.F., 2012. RANK, RANKL and OPG Expression in Breast Cancer - Influence on Osseous Metastasis. Geburtshilfe Frauenheilkd. 72, 385-391.
Pangrazio, A., Puddu, A., Oppo, M., Valentini, M., Zammataro, L., Vellodi, A., Gener, B., Llano-Rivas, I., Raza, J., Atta, I., Vezzoni, P., Superti-Furga, A., Villa, A. and Sobacchi, C., 2014. Exome sequencing identifies CTSK mutations in patients originally diagnosed as intermediate osteopetrosis. Bone. 59, 122-6.
Park, K.H., Park, B., Yoon, D.S., Kwon, S.H., Shin, D.M., Lee, J.W., Lee, H.G., Shim, J.H., Park, J.H. and Lee, J.M., 2013. Zinc inhibits osteoclast differentiation by suppression of Ca2+-Calcineurin-NFATc1 signaling pathway. Cell Commun Signal. 11, 74.
Ren, X., Shan, W.H., Wei, L.L., Gong, C.C. and Pei, D.S., 2018. ACP5: its structure, distribution, regulation and novel functions. Anticancer Agents Med Chem.
Robinson, D.B. and Glew, R.H., 1980. Acid phosphatase in Gaucher's disease. Clin Chem. 26, 371-82.
Ruocco, M.G., Maeda, S., Park, J.M., Lawrence, T., Hsu, L.C., Cao, Y., Schett, G., Wagner, E.F. and Karin, M., 2005. I{kappa}B kinase (IKK){beta}, but not IKK{alpha}, is a critical mediator of osteoclast survival and is required for inflammation-induced bone loss. J Exp Med. 201, 1677-87.
Sacri, A.S., Bruwier, A., Baujat, G., Breton, S., Blanche, S., Briggs, T.A. and Bader-Meunier, B., 2017. Childhood-onset autoimmune cytopenia as the presenting feature of biallelic ACP5 mutations. Pediatr Blood Cancer. 64, 306-310.
Sharif, F., de Bakker, M.A. and Richardson, M.K., 2014. Osteoclast-like Cells in Early Zebrafish Embryos. Cell J. 16, 211-24.
Sharma, S.M., Bronisz, A., Hu, R., Patel, K., Mansky, K.C., Sif, S. and Ostrowski, M.C., 2007. MITF and PU.1 recruit p38 MAPK and NFATc1 to target genes during osteoclast differentiation. J Biol Chem. 282, 15921-9.
Sims, N.A. and Martin, T.J., 2015. Coupling Signals between the Osteoclast and Osteoblast: How are Messages Transmitted between These Temporary Visitors to the Bone Surface? Front Endocrinol (Lausanne). 6, 41.
Takahashi, N., Yamana, H., Yoshiki, S., Roodman, G.D., Mundy, G.R., Jones, S.J., Boyde, A. and Suda, T., 1988. Osteoclast-like cell formation and its regulation by osteotropic hormones in mouse bone marrow cultures. Endocrinology. 122, 1373-82.
Takayanagi, H., Kim, S. and Taniguchi, T., 2002. Signaling crosstalk between RANKL and interferons in osteoclast differentiation. Arthritis Res. 4 Suppl 3, S227-32.
Takayanagi, H., Ogasawara, K., Hida, S., Chiba, T., Murata, S., Sato, K., Takaoka, A., Yokochi, T., Oda, H., Tanaka, K., Nakamura, K. and Taniguchi, T., 2000. T-cell-mediated regulation of osteoclastogenesis by signalling cross-talk between RANKL and IFN-gamma. Nature. 408, 600-5.
Tang, Y., Wu, X., Lei, W., Pang, L., Wan, C., Shi, Z., Zhao, L., Nagy, T.R., Peng, X., Hu, J., Feng, X., Van Hul, W., Wan, M. and Cao, X., 2009. TGF-beta1-induced migration of bone mesenchymal stem cells couples bone resorption with formation. Nat Med. 15, 757-65.
Tomomura, M., Suzuki, R., Shirataki, Y., Sakagami, H., Tamura, N. and Tomomura, A., 2015. Rhinacanthin C Inhibits Osteoclast Differentiation and Bone Resorption: Roles of TRAF6/TAK1/MAPKs/NF-kappaB/NFATc1 Signaling. PLoS One. 10, e0130174.
Walsh, N.C., Cahill, M., Carninci, P., Kawai, J., Okazaki, Y., Hayashizaki, Y., Hume, D.A. and Cassady, A.I., 2003. Multiple tissue-specific promoters control expression of the murine tartrate-resistant acid phosphatase gene. Gene. 307, 111-23.
Wang, C., Xiao, F., Qu, X., Zhai, Z., Hu, G., Chen, X. and Zhang, X., 2017a. Sitagliptin, An Anti-diabetic Drug, Suppresses Estrogen Deficiency-Induced OsteoporosisIn Vivo and Inhibits RANKL-Induced Osteoclast Formation and Bone Resorption In Vitro. Front Pharmacol. 8, 407.
Wang, T., Jiao, J., Zhang, H., Zhou, W., Li, Z., Han, S., Wang, J., Yang, X., Huang, Q., Wu, Z., Yan, W. and Xiao, J., 2017b. TGF-beta induced PAR-1 expression promotes tumor progression and osteoclast differentiation in giant cell tumor of bone. Int J Cancer. 141, 1630-1642.
Wittkowske, C., Reilly, G.C., Lacroix, D. and Perrault, C.M., 2016. In Vitro Bone Cell Models: Impact of Fluid Shear Stress on Bone Formation. Front Bioeng Biotechnol. 4, 87.
Yan, T., Riggs, B.L., Boyle, W.J. and Khosla, S., 2001. Regulation of osteoclastogenesis and RANK expression by TGF-beta1. J Cell Biochem. 83, 320-5.
Yao, Z., Lei, W., Duan, R., Li, Y., Luo, L. and Boyce, B.F., 2017. RANKL cytokine enhances TNF-induced osteoclastogenesis independently of TNF receptor associated factor (TRAF) 6 by degrading TRAF3 in osteoclast precursors. J Biol Chem. 292, 10169-10179.
Yasuda, H., Shima, N., Nakagawa, N., Mochizuki, S.I., Yano, K., Fujise, N., Sato, Y., Goto, M., Yamaguchi, K., Kuriyama, M., Kanno, T., Murakami, A., Tsuda, E., Morinaga, T. and Higashio, K., 1998a. Identity of osteoclastogenesis inhibitory factor (OCIF) and osteoprotegerin (OPG): a mechanism by which OPG/OCIF inhibits osteoclastogenesis in vitro. Endocrinology. 139, 1329-37.
Yasuda, H., Shima, N., Nakagawa, N., Yamaguchi, K., Kinosaki, M., Mochizuki, S., Tomoyasu, A., Yano, K., Goto, M., Murakami, A., Tsuda, E., Morinaga, T., Higashio, K., Udagawa, N., Takahashi, N. and Suda, T., 1998b. Osteoclast differentiation factor is a ligand for osteoprotegerin/osteoclastogenesis-inhibitory factor and is identical to TRANCE/RANKL. Proc Natl Acad Sci U S A. 95, 3597-602.
Zha, L., He, L., Liang, Y., Qin, H., Yu, B., Chang, L. and Xue, L., 2018. TNF-alpha contributes to postmenopausal osteoporosis by synergistically promoting RANKL-induced osteoclast formation. Biomed Pharmacother. 102, 369-374.
Zhang, Y., Jiang, P., Li, W., Liu, X., Lu, Y., Huang, Z. and Song, K., 2017. Calcineurin/NFAT signaling pathway mediates titanium particleinduced inflammation and osteoclast formation by inhibiting RANKL and MCSF in vitro. Mol Med Rep. 16, 8223-8230.
林瑜均 蝕骨細胞特異性基因啟動子Acp5b轉殖實驗及觀察在發育過程蝕骨細胞的分佈, 2016
王翰偉 以TRAP染色探討雙磷酸鹽對蝕骨細胞及骨骼再生之影響-斑馬魚尾鰭再生模式, 2013
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/70850-
dc.description.abstract蝕骨細胞(osteoclast)做為一個吸收骨基質的細胞,在各種具有骨骼的生物中扮演重要角色,其起源是由骨髓中分化的單核細胞,經由訊息傳遞活化並產生細胞融合而形成,其外觀具有明顯的多細胞核構造與富含粒線體。蝕骨細胞和造骨細胞(osteoblast)藉由兩者間的訊息傳遞相互調節彼此的生長,在骨骼的重塑、生長的調節及外觀形態的控制上擔任重責。當蝕骨細胞進行骨基質的吸收時,該細胞會以皺褶緣(ruffled border)貼附於目標表面,用來增加分解骨基質之速率,而後藉由質子幫浦(proton pump)使該環境處於pH值約5的酸性,進一步使蝕骨細胞中的酵素如抗酒石酸酸性磷酸酶(tartrate resistant acid phosphatase, TRAP)被大量釋出,鈣離子與磷酸根離子被蝕骨細胞運輸並釋放到血液裡,從而完成這個骨基質吸收過程。抗酒石酸酸性磷酸酶(TRAP,又名acid phosphatase 5,ACP5)做為常見的檢測蝕骨細胞功能的標記,其功能為在酸性環境下將目標之磷酸根解離出來,並在後續鈣離子的釋放中,隨著鈣離子一同被釋放進血液,因此經由檢測血液中的TRAP濃度可以得知蝕骨細胞的活性。
抗酒石酸酸性磷酸酶在人類的基因名稱如同其酵素名,同樣為Acp5,然而在斑馬魚中產生了分歧,分別名為acp5a及acp5b,兩者間的機制與功能目前尚未釐清,在此我使用了acp5a作為我研究的標的。而在acp5a中,又可細分出三個不同的轉錄起始點,分別位在Exon 1a,Exon 1b及Exon 1c上,因此在此篇論文中,將會探討這三個轉錄起始點與啟動子(promotor)片段活性。
在過去實驗室學長姊的研究中得知,在斑馬魚截尾再生的過程中,可以用TRAP染色染到抗酒石酸酸性磷酸酶。為了接續探討抗酒石酸酸性磷酸酶在骨吸收與再生中扮演的角色,這篇論文裡,我使用斑馬魚作為模式動物,並且利用Tol2的轉位子系統以及以紅色螢光蛋白(DsRed)做為報導基因,經由顯微注射的方式來建立一個帶有抗酒石酸酸性磷酸酶啟動子的品系。在過渡性實驗(F0)中,斑馬魚於孵化後7-10天利用螢光顯微鏡觀察時,除了明顯的眼睛螢光外,在三種不同啟動子片段的組別中,Exon(1a+1b)+ TATA276bp(Exon1c+2)的組別可明顯在全身脊椎發現節狀亮點,而在Exon(1c+2)組以及Exon(1a+1b)組則沒有發現到。在卵黃的情況中,Exon(1c+2)組與Exon(1a+1b)+TATA276bp(Exon1c+2)組都能在7天左右的斑馬魚卵黃發現螢光,Exon(1a+1b)組依然沒有發現到。而在後續經由篩選建立的恆定品系(F1)當中,Exon(1a+1b)+TATA276bp(Exon1c+2)的組別,共篩選到3種身體帶有螢光的品系(分別命名為2號、7-1號與7-2號),在身體螢光表現較強的7-1號與7-2號中,其螢光表現與目前已知的TRAP染色結果大致相同,在孵化後14天起陸續於脊椎骨、魚鰭鰭條、上下顎骨表現出紅色螢光,對斑馬魚成魚的觀察中也能發現到其身體表面與鱗片上的紅色螢光。除此之外,進一步對斑馬魚成魚進行截尾實驗,以觀察其在骨再生中的表現,在再生的尾鰭中也可以觀測到紅色螢光有從截尾的傷口擴散到新生尾鰭的情況,與過去實驗室內學長對尾鰭再生進行的TRAP染色研究結果大致相同。
zh_TW
dc.description.abstractOsteoclasts, cells that absorb bone matrix, play an important role in various bone metabolism. They are formed by the differentiation of monocytes in the bone marrow, activation by signal transduction, and then maturation via cell fusion with multi-nuclear structure and rich in mitochondria. Interactions between osteoclasts and osteoblasts are essential for the remodeling, the growth-regulation, and the control of morphology of bones. When osteoclasts absorb the bone matrix, the cells attach to the target surface with a ruffled border to confine a region where the bone matrix is broken down. In an acidic environment at a pH of about 5 mediated by a proton pump, the enzymes in the osteoclast, such as tartrate-resistant acid phosphatase (TRAP), are released in large quantities, and calcium ions and phosphate ions are transported by the osteoclasts and released into the blood, completing the bone-matrix absorption process. TRAP, also known as acid phosphatase 5 (ACP5), is a common marker for detecting the function of osteoclasts. Its function is to dissociate the phosphate from the targets in an acidic environment and release it with calcium ions. As TRAPs are released into the blood together with calcium ions, the activity of the osteoclasts can be detected by the concentration of TRAP in the blood.
In zebrafish, two acp5 genes, acp5a and acp5b, are located in the genome. The mechanism and function of the two genes are still elusive. Herein, I study the enhancer functionalities of acp5a. From NCBI and Ensembl bioinormatics, three transcriptional start sites, located on Exon 1a, Exon 1b and Exon 1c, are present in acp5a. The conserved enhancers and promoter regions around these three transcriptional start sites will be cloned and analyzed.
From our previous studies, osteoclasts detected by TRAP staining are located along the regenerated fin rays after fin amputation in zebrafish. To investigate the role of ACP5 in bone resorption and regeneration, I used zebrafish as a model animal and performed transgenic assays to analyze the enhancer activities of acp5a with the aids of Tol2 transposon system and fluorescent proteins (DsRed, GFP).
I have prepared several enhancer-promoter constructs with reporter genes. The plasmids were microinjected in the zebrafish eggs at one-cell stage. Eye-specific enhancer-promoter fragments were conjugated in the constructs to facilitate the observation and screening of transgenic zebrafish. In transient experiments (F0), the construct harboring fragments of upstream region (Exon1a + Exon1b) and TATA-276bp (Exon1c + Exon2) drives the reporter gene expression in the eyes and around neural and hemal arches of vertebrates, when observed at 7-10 dpf (day-post-fertilization).
However, specific expression patterns of the reporter gene were not observed by the constructs with the fragments of Exon1c+Exon2 or Exon1a+Exon1b.
Furthermore, stable lines (F1) were established by screening with the aid of reporter gene expression in the eyes. Three transgenic stable lines (No.2, No.7-1 and No.7-2) were obtained with the enhancer-promoter construct of the (Exon1a + Exon1b) and TATA-276bp (Exon1c + Exon2) combination. The expression patterns of the reporter gene in the stable lines (No.7-1. No.7-2) are approximately about the same as the currently known TRAP staining results, detected around the vertebrates, maxilla , mandible and fin rays at 14 dpf. In addition, fluorescent-labelled cells can be found scattered on the caudal fin rays and the scales.
Moreover, during bone regeneration, fluorescent-labelled cells were also observed along the regenerated caudal fin rays, which was similar to the results of TRAP staining of our previous studies in the laboratory.
en
dc.description.provenanceMade available in DSpace on 2021-06-17T04:40:56Z (GMT). No. of bitstreams: 1
ntu-107-R01450011-1.pdf: 5693043 bytes, checksum: a75a37f3c41d81683d600f5a01cb6b5b (MD5)
Previous issue date: 2018
en
dc.description.tableofcontents口試委員會審定書……………………………………………………… I
致謝……………………………………………………………………… II
中文摘要………………………………………………………………… III
英文摘要………………………………………………………………… V
目次……………………………………………………………………… VII
壹、前言………………………………………………………………… 1
貳、實驗材料…………………………………………………………… 28
參、實驗方法…………………………………………………………… 35
肆、結果………………………………………………………………… 47
伍、討論………………………………………………………………… 52
陸、未來展望…………………………………………………………… 56
柒、圖表………………………………………………………………… 57
捌、參考資料…………………………………………………………… 82
dc.language.isozh-TW
dc.subjectTRAPzh_TW
dc.subject斑馬魚zh_TW
dc.subject蝕骨細胞zh_TW
dc.subject骨重塑作用zh_TW
dc.subjectACP5azh_TW
dc.subjectBone remodelingen
dc.subjectTRAPen
dc.subjectZebrafishen
dc.subjectOsteoclasten
dc.subjectACP5aen
dc.title選殖及分析斑馬魚蝕骨細胞專一性表現之ACP5a基因啟動子zh_TW
dc.titleCloning and analysis of osteoclast-specific ACP5a gene promoter in zebrafishen
dc.typeThesis
dc.date.schoolyear106-2
dc.description.degree碩士
dc.contributor.oralexamcommittee姚宗珍,張玉芳
dc.subject.keyword蝕骨細胞,TRAP,ACP5a,骨重塑作用,斑馬魚,zh_TW
dc.subject.keywordOsteoclast,TRAP,ACP5a,Bone remodeling,Zebrafish,en
dc.relation.page94
dc.identifier.doi10.6342/NTU201802340
dc.rights.note有償授權
dc.date.accepted2018-08-06
dc.contributor.author-college醫學院zh_TW
dc.contributor.author-dept口腔生物科學研究所zh_TW
顯示於系所單位:口腔生物科學研究所

文件中的檔案:
檔案 大小格式 
ntu-107-1.pdf
  未授權公開取用
5.56 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved