請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/70842完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 陳應誠(Ying-Cheng Chen) | |
| dc.contributor.author | Sheng-Xiang Lin | en |
| dc.contributor.author | 林聖翔 | zh_TW |
| dc.date.accessioned | 2021-06-17T04:40:37Z | - |
| dc.date.available | 2020-08-09 | |
| dc.date.copyright | 2018-08-09 | |
| dc.date.issued | 2018 | |
| dc.date.submitted | 2018-08-06 | |
| dc.identifier.citation | [1] Yong-Fan Chen, Pei-Chen Kuan, Shih-Hao Wang, Chang-Yi Wang, and Ite A. Yu. Manipulating the retrieved frequency and polarization of stored light pulses. Opt. Lett., 31(23):3511–3513, Dec 2006.
[2] Alexey V. Gorshkov, Axel André, Michael Fleischhauer, Anders S. Sørensen, and Mikhail D. Lukin. Universal approach to optimal photon storage in atomic media. Phys. Rev. Lett., 98:123601, Mar 2007. [3] Pei-Chen Guan, Yong-Fan Chen, and Ite A. Yu. Role of degenerate zeeman states in the storage and retrieval of light pulses. Phys. Rev. A, 75:013812, Jan 2007. [4] Pieter Kok, W. J. Munro, Kae Nemoto, T. C. Ralph, Jonathan P. Dowling, and G. J. Milburn. Linear optical quantum computing with photonic qubits. Rev. Mod. Phys., 79:135–174, Jan 2007. [5] Mark Fox. Quantum optics: an introduction. Oxford Master Series in Atomic, Optical and Laser Physics. Oxford Univ. Press, Oxford, 2006. [6] Michael A. Nielsen and Isaac L. Chuang. Quantum Computation and Quantum Information. Cambridge University Press, 2000. [7] H. J. Kimble. The quantum internet. Nature, 453:1023–1030, June 2008. [8] Ya-Fen Hsiao, Pin-Ju Tsai, Hung-Shiue Chen, Sheng-Xiang Lin, Chih-Chiao Hung, Chih-Hsi Lee, Yi-Hsin Chen, Yong-Fan Chen, Ite A. Yu, and Ying-Cheng Chen. Highly efficient coherent optical memory based on electromagnetically induced transparency. Phys. Rev. Lett., 120:183602, May 2018. [9] C. Langer, R. Ozeri, J. D. Jost, J. Chiaverini, B. DeMarco, A. Ben-Kish, R. B. Blakestad, J. Britton, D. B. Hume, W. M. Itano, D. Leibfried, R. Reichle, T. Rosenband, T. Schaetz,P. O. Schmidt, and D. J. Wineland. Long-lived qubit memory using atomic ions. Phys. Rev. Lett., 95:060502, Aug 2005. [10] D. Leibfried, B. DeMarco, V. Meyer, D. Lucas, M. Barrett, J. Britton, W. M. Itano, B. Jelenkovic, C. Langer, T. Rosenband, and D. J. Wineland. Experimental demonstration of a robust, high-fidelity geometric two ion-qubit phase gate. Nature, 422:412–415, March 2003. [11] R. Barends, A. Shabani, L. Lamata, J. Kelly, A. Mezzacapo, U. Las Heras, R. Babbush, A. G. Fowler, B. Campbell, Yu Chen, Z. Chen, B. Chiaro, A. Dunsworth, E. Jeffrey, E. Lucero, A. Megrant, J. Y. Mutus, M. Neeley, C. Neill, P. J. J. O’Malley, C. Quintana, P. Roushan, D. Sank, A. Vainsencher, J. Wenner, T. C. White, E. Solano, H. Neven, and John M. Martinis. Digitized adiabatic quantum computing with a superconducting circuit. Nature, 534:222 – 226, Jun 2016. [12] Ronald Hanson and David D. Awschalom. Coherent manipulation of single spins in semiconductors. Nature, 453:1043–1049, Jun 2008. [13] A. P. Higginbotham, P. S. Burns, M. D. Urmey, R. W. Peterson, N. S. Kampel, B. M. Brubaker, G. Smith, K. W. Lehnert, and C. A. Regal. Harnessing electro-optic correlations in an efficient mechanical converter. Nature Physics, 2018. [14] Michael Fleischhauer, Atac Imamoglu, and Jonathan P. Marangos. Electromagnetically induced transparency: Optics in coherent media. Rev. Mod. Phys., 77:633–673, Jul 2005. [15] M. Fleischhauer and M. D. Lukin. Quantum memory for photons: Dark-state polaritons.Phys. Rev. A, 65:022314, Jan 2002. [16] Alexey V. Gorshkov, Axel André, Mikhail D. Lukin, and Anders S. Sørensen. Photon storage in lambda-type optically dense atomic media. ii. free-space model. Phys. Rev. A, 76:033805, Sep 2007. [17] Anil K. Patnaik, Fam Le Kien, and K. Hakuta. Manipulating the retrieval of stored light pulses. Phys. Rev. A, 69:035803, Mar 2004. [18] Mikhail D. Lukin. Modern Atomic and Optical Physics II (Lecture Notes). 2005. [19] M. Fleischhauer and M. D. Lukin. Dark-state polaritons in electromagnetically induced transparency. Phys. Rev. Lett., 84:5094–5097, May 2000. [20] Pei-Chen Guan and Ite A. Yu. Simplification of the electromagnetically induced transparency system with degenerate zeeman states. Phys. Rev. A, 76:033817, Sep 2007. [21] Christopher J Foot. Atomic physics. Oxford master series in atomic, optical and laser physics. Oxford University Press, Oxford, 2007. [22] Ya-Fen Hsiao, Hung-Shiue Chen, Pin-Ju Tsai, and Ying-Cheng Chen. Cold atomic media with ultrahigh optical depths. Phys. Rev. A, 90:055401, Nov 2014. [23] Daniel A. Steck. Cesium D Line Data. https://steck.us/alkalidata/cesiumnumbers.1.6.pdf. 2003. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/70842 | - |
| dc.description.abstract | 基於電磁誘發透明的同調光記憶體提供了一個工具去轉換探測光[1,2],藉由在讀取的過程中,操縱不同的激發原子同調的控制場,去轉換探測光的偏極、頻率跟行進的方向。然而,實際執行上無可避免地會遇到一些問題,舉例來說,在真實原子中,因為儲存與讀取過程的躍遷偶極矩的不匹配而導制的能量損失[3]。在本文中,我們發現儘管在這種條件下,轉換光的能量效率可以超過存取光的效率,而且這取決於在儲存與讀取過程的躍遷偶極矩的比值,我們提供了一個詳細的理論計算討論相關的問題,以及提供了在冷銫原子實驗上的數據;在我們的分析中發現,在讀取的過程中,讀取過程的頻寬與剛從原子同調取出來的光的比值可以解釋這一類型的能量損失。 | zh_TW |
| dc.description.abstract | Coherent optical memory based on electromagnetically induced transparency (EIT) provides a tool to convert the polarization, frequency, and propagation direction of the probe light by using different control fields driving an atomic transition during the retrieval process [1,2]. However, it is inevitable to face some issues, such as energy loss which is caused by the different transition dipole moments between two transitions used in storage and retrieval processes in real atoms [3]. In this thesis, we found that despite in this condition, efficiency of the converted probe pulse could surpass the one of stored light pulse, and it depends on the ratio between the transition dipole moment in the retrieval transition and the one in the storage transition. We provide a detailed theoretical study on this issue and present the experimental results in cold cesium atoms. Moreover, the results could be understood by
analyzing the spectral bandwidth in retrieval processes. In our analysis, the ratio of the spectral bandwidth between the retrieval process and the pulse retrieved from the ground-state coherence can account for this kind of loss. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-17T04:40:37Z (GMT). No. of bitstreams: 1 ntu-107-R05222013-1.pdf: 6881074 bytes, checksum: 3d89d0576fa965ecbe415115e0bdc30b (MD5) Previous issue date: 2018 | en |
| dc.description.tableofcontents | 口試委員會審定書 iii
誌謝 v 摘要 vii Abstract ix 1 Introduction 1 2 Theoretical background 5 2.1 Two-level system . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 2.1.1 Resonance (delta = 0) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 2.1.2 Far off-resonance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 2.2 Dressed states . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 2.2.1 Density matrix and optical Bloch equation . . . . . . . . . . . . . . . . 9 2.3 Propagation of light in medium . . . . . . . . . . . . . . . . . . . . . . . . . . 12 2.3.1 Continuous-wave fields and optical depth . . . . . . . . . . . . . . . . 12 2.3.2 Absorption and refraction . . . . . . . . . . . . . . . . . . . . . . . . 13 2.3.3 Slowly varying envelope approximation . . . . . . . . . . . . . . . . . 17 2.3.4 Generalization of multiple two-level systems . . . . . . . . . . . . . . 19 2.4 Three-level system . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 2.4.1 Raman transition in lambda-type scheme . . . . . . . . . . . . . . . . . . . 20 2.4.2 Electromagnetically-induced transparency (EIT) . . . . . . . . . . . . 24 2.4.3 Transmission of Gaussian pulses . . . . . . . . . . . . . . . . . . . . . 26 2.4.4 Light storage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 2.4.5 Generalization of multiple EIT systems . . . . . . . . . . . . . . . . . 31 2.5 Four-level system . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 3 Light field Conversion 41 3.1 Bandwidth and loss of retrieved light . . . . . . . . . . . . . . . . . . . . . . . 47 4 Setup and methods 51 4.1 Cold atomic system . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51 4.1.1 Force on atoms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51 4.1.2 Doppler cooling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52 4.1.3 Experimental medium . . . . . . . . . . . . . . . . . . . . . . . . . . 55 4.2 Light field conversion Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . 56 4.3 Absorption Imaging . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60 4.3.1 Absorption law . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61 4.3.2 Temperature of atomic clouds . . . . . . . . . . . . . . . . . . . . . . 62 5 Results and discussion 67 5.1 Experimental problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67 5.1.1 Coupling Injection-locking problem . . . . . . . . . . . . . . . . . . . 67 5.1.2 Polarization of coupling lights . . . . . . . . . . . . . . . . . . . . . . 69 5.2 Result of setup2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69 5.3 Bandwidth and conversion efficiency . . . . . . . . . . . . . . . . . . . . . . . 69 5.3.1 Loss from population distribution . . . . . . . . . . . . . . . . . . . . 73 5.3.2 Population distribution measurement . . . . . . . . . . . . . . . . . . 76 5.4 Conversion ratio due to the delay time and bandwidth of input light . . . . . . 79 6 Conclusion and future work 83 A Matlab code 87 A.1 Main code . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87 A.2 Cesium D1-line Clebsch–Gordan coefficients . . . . . . . . . . . . . . . . . . 95 B Laser system 97 B.1 Cesium D2-line laser system (852nm) . . . . . . . . . . . . . . . . . . . . . . 97 B.2 Cesium D1-line laser system (894nm) . . . . . . . . . . . . . . . . . . . . . . 98 C Microwave spectroscopy 99 C.1 Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99 C.2 Microwave spectroscopy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102 Bibliography 105 | |
| dc.language.iso | en | |
| dc.subject | 光場轉換 | zh_TW |
| dc.subject | 同調光記憶體 | zh_TW |
| dc.subject | 電磁誘發透明 | zh_TW |
| dc.subject | Coherent optical memory | en |
| dc.subject | Electromagnetically-induced transparency | en |
| dc.subject | light field conversion | en |
| dc.title | 基於電磁誘發透明機制的同調光記憶體之光場轉換 | zh_TW |
| dc.title | Light field conversion based on coherent optical memory
using electromagnetically induced transparency scheme | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 106-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.coadvisor | 林俊達(Guin-Dar Lin) | |
| dc.contributor.oralexamcommittee | 陳泳帆(Yong-Fan Chen),廖文德(Wen-Te Liao) | |
| dc.subject.keyword | 同調光記憶體,電磁誘發透明,光場轉換, | zh_TW |
| dc.subject.keyword | Coherent optical memory,Electromagnetically-induced transparency,light field conversion, | en |
| dc.relation.page | 107 | |
| dc.identifier.doi | 10.6342/NTU201802546 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2018-08-07 | |
| dc.contributor.author-college | 理學院 | zh_TW |
| dc.contributor.author-dept | 物理學研究所 | zh_TW |
| 顯示於系所單位: | 物理學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-107-1.pdf 未授權公開取用 | 6.72 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
