請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/70839完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 魏志平(Chih-Ping Wei) | |
| dc.contributor.author | Lei-Yao Hung | en |
| dc.contributor.author | 洪蕾曜 | zh_TW |
| dc.date.accessioned | 2021-06-17T04:40:29Z | - |
| dc.date.available | 2021-08-07 | |
| dc.date.copyright | 2018-08-07 | |
| dc.date.issued | 2018 | |
| dc.date.submitted | 2018-08-07 | |
| dc.identifier.citation | Aaker, J. L. (1997). Dimensions of brand personality. Journal of Marketing Research, 34(3), 347-356.
Aaker, J. L., Benet-Martinez, V., & Garolera, J. (2001). Consumption symbols as carriers of culture: A study of Japanese and Spanish brand personality constucts. Journal of Personality and Social Psychology, 81(3), 492. Aggarwal, P., Vaidyanathan, R., & Venkatesh, A. (2009). Using lexical semantic analysis to derive online brand positions: An application to retail marketing research. Journal of Retailing, 85(2), 145-158. Ang, S. H., & Lim, E. A. C. (2006). The influence of metaphors and product type on brand personality perceptions and attitudes. Journal of Advertising, 35(2), 39-53. Bhatt, A., Patel, A., Chheda, H., & Gawande, K. (2015). Amazon review classification and sentiment analysis. International Journal of Computer Science and Information Technologies, 6(6), 5107-5110. Biel, A. L. (1993). Converting image into equity. Brand Equity and Advertising: Advertising's Role in Building Strong Brands. (pp. 67-82). Chu, S.-C., & Sung, Y. (2011). Brand personality dimensions in China. Journal of Marketing Communications, 17(3), 163-181. Culotta, A., & Cutler, J. (2016). Mining brand perceptions from Twitter social networks. Marketing Science, 35(3), 343-362. Dolich, I. J. (1969). Congruence relationships between self images and product brands. Journal of Marketing Research, 6(1), 80-84. Ekinci, Y., & Hosany, S. (2006). Destination personality: An application of brand personality to tourism destinations. Journal of Travel Research, 45(2), 127-139. Fang, X., & Zhan, J. (2015). Sentiment analysis using product review data. Journal of Big Data, 2(5), 1-14. Farnadi, G., Sitaraman, G., Sushmita, S., Celli, F., Kosinski, M., Stillwell, D., Davalos, S., Moens, M. F., & De Cock, M. (2016). Computational personality recognition in social media. User Modeling and User-adapted Interaction, 26(2-3), 109-142. Farooqui, M. S., & Nagendra, A. (2014). The impact of person organization fit on job satisfaction and performance of the employees. Procedia economics and Finance, 11, 122-129. Fournier, S. (1998). Consumers and their brands: Developing relationship theory in consumer research. Journal of Consumer Research, 24(4), 343-373. Freling, T. H., & Forbes, L. P. (2013). An empirical analysis of the brand personality effect. Journal of Product & Brand Management, 14(7), 404-413. Furnas, G. W., Deerwester, S., Dumais, S. T., Landauer, T. K., Harshman, R. A., Streeter, L. A., & Lochbaum, K. E. (1988). Information retrieval using a singular value decomposition model of latent semantic structure. Proceedings of the 11th Annual International ACM SIGIR Conference on Research and Development in Information Retrieval. Gensler, S., Völckner, F., Egger, M., Fischbach, K., & Schoder, D. (2015). Listen to your customers: Insights into brand image using online consumer-generated product reviews. International Journal of Electronic Commerce, 20(1), 112-141. Golbeck, J., Robles, C., Edmondson, M., & Turner, K. (2011). Predicting personality from Twitter. 2011 IEEE Third International Conference on Privacy, Security, Risk and Trust and 2011 IEEE Third International Conference on Social Computing. Grohmann, B. (2009). Gender dimensions of brand personality. Journal of Marketing Research, 46(1), 105-119. Hu, M., & Liu, B. (2004). Mining opinion features in customer reviews. Proceedings of the 19th National Conference on Artifical intelligence. Hu, T., Xiao, H., Luo, J., & Nguyen, T.-v. T. (2016). What the language you Tweet says about your occupation. Tenth International AAAI Conference on Web and Social Media. Keller, K. L. (1993). Conceptualizing, measuring, and managing customer-based brand equity. Journal of Marketing, 57(1), 1-22. Kenthapadi, K., Le, B., & Venkataraman, G. (2017). Personalized job recommendation system at linkedin: Practical challenges and lessons learned. Proceedings of the Eleventh ACM Conference on Recommender Systems. Kim, C. K., Han, D., & Park, S. B. (2001). The effect of brand personality and brand identification on brand loyalty: Applying the theory of social identification. Japanese Psychological Research, 43(4), 195-206. Lee, T. Y., & Bradlow, E. T. (2011). Automated marketing research using online customer reviews. Journal of Marketing Research, 48(5), 881-894. Lilleberg, J., Zhu, Y., & Zhang, Y. (2015). Support vector machines and word2vec for text classification with semantic features. 2015 IEEE 14th International Conference on Cognitive Informatics & Cognitive Computing (ICCI* CC). Liu, T., Chen, Z., Zhang, B., Ma, W., & Wu, G. (2004). Improving text classification using local latent semantic indexing. Fourth IEEE International Conference on Data Mining (ICDM'04). Liu, X., Burns, A. C., & Hou, Y. J. (2017). An investigation of brand-related user-generated content on Twitter. Journal of Advertising, 46(2), 236-247. Liu, Z., Huang, S. S., Hallak, R., & Liang, M. (2016). Chinese consumers' brand personality perceptions of tourism real estate firms. Tourism Management, 52, 310-326. Maehle, N., Otnes, C., & Supphellen, M. (2011). Consumers' perceptions of the dimensions of brand personality. Journal of Consumer Behaviour, 10(5), 290-303. Mairesse, F., Walker, M. A., Mehl, M. R., & Moore, R. K. (2007). Using linguistic cues for the automatic recognition of personality in conversation and text. Journal of Artificial Intelligence Research, 30, 457-500. Mikolov, T., Sutskever, I., Chen, K., Corrado, G. S., & Dean, J. (2013). Distributed representations of words and phrases and their compositionality. Proceedings of NIPS 2013. Misopoulos, F., Mitic, M., Kapoulas, A., & Karapiperis, C. (2014). Uncovering customer service experiences with Twitter: The case of airline industry. Management Decision, 52(4), 705-723. Opoku, R. A., Abratt, R., Bendixen, M., & Pitt, L. (2007). Communicating brand personality: are the web sites doing the talking for food SMEs? Qualitative Market Research: An International Journal, 10(4), 362-374. Ranfagni, S., Camiciottoli, B. C., & Faraoni, M. (2016). How to measure alignment in perceptions of brand personality within online communities: Interdisciplinary insights. Journal of Interactive Marketing, 35, 70-85. Ren, Y., Zhang, Y., Zhang, M., & Ji, D. (2016). Context-Sensitive Twitter sentiment classification using neural network. Proceedings of the Thirtieth AAAI Conference on Artifical Intelligence. Ross, S. D. (2008). Assessing the use of the brand personality scale in team sport. International Journal of Sport Management and Marketing, 3(1-2), 23-38. Schwartz, H. A., Eichstaedt, J. C., Kern, M. L., Dziurzynski, L., Ramones, S. M., Agrawal, M., Shah, A., Kosinski, M., Stillwell, D., & Seligman, M. E. (2013). Personality, gender, and age in the language of social media: The open-vocabulary approach. PloS one, 8(9), e73791. Severyn, A., & Moschitti, A. (2015). Twitter sentiment analysis with deep convolutional neural networks. Proceedings of the 38th International ACM SIGIR Conference on Research and Development in Information Retrieval. Sirgy, M. J. (1982). Self-concept in consumer behavior: A critical review. Journal of Consumer Research, 9(3), 287-300. Siting, Z., Wenxing, H., Ning, Z., & Fan, Y. (2012). Job recommender systems: a survey. 2012 7th International Conference on Computer Science & Education (ICCSE). Sumner, C., Byers, A., Boochever, R., & Park, G. J. (2012). Predicting dark triad personality traits from Twitter usage and a linguistic analysis of Tweets. 2012 11th International Conference on Machine Learning and Applications. Sung, Y., & Kim, J. (2010). Effects of brand personality on brand trust and brand affect. Psychology & Marketing, 27(7), 639-661. Sung, Y., & Tinkham, S. F. (2005). Brand personality structures in the United States and Korea: Common and culture-specific factors. Journal of Consumer Psychology, 15(4), 334-350. Supphellen, M., & Grønhaug, K. (2003). Building foreign brand personalities in Russia: the moderating effect of consumer ethnocentrism. International Journal of Advertising, 22(2), 203-226. Szmigin, I., & Piacentini, M. (2018). Consumer behaviour: Oxford University Press. Tirunillai, S., & Tellis, G. J. (2014). Mining marketing meaning from online chatter: Strategic brand analysis of big data using latent dirichlet allocation. Journal of Marketing Research, 51(4), 463-479. Venable, B. T., Rose, G. M., Bush, V. D., & Gilbert, F. W. (2005). The role of brand personality in charitable giving: An assessment and validation. Journal of the Academy of Marketing Science, 33(3), 295-312. Wang, X., Yang, Z., & Liu, N. R. (2009). The impacts of brand personality and congruity on purchase intention: Evidence from the Chinese mainland's automobile market. Journal of Global Marketing, 22(3), 199-215. Wilson, M. (1988). MRC psycholinguistic database: Machine-usable dictionary, version 2.00. Behavior Research Methods, Instruments, & Computers, 20(1), 6-10. Xu, A., Liu, H., Gou, L., Akkiraju, R., Mahmud, J., Sinha, V., Hu, Y., & Qiao, M. (2016). Predicting Perceived Brand Personality with Social Media. International AAAI Conference on Web and Social Media, 2016. Zelikovitz, S., & Hirsh, H. (2001). Using LSI for text classification in the presence of background text. Proceedings of the Tenth International Conference on Information and Knowledge Management. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/70839 | - |
| dc.description.abstract | 品牌個性是「一組與品牌聯想在一起的人格特質」,也是消費者將品牌擬人化後的印象。相較於功能面的產品屬性,品牌個性可以滿足消費者象徵性的自我表達上的需求。消費者會喜歡與真實的、理想中的自己個性相符的品牌,用來展現自己。研究發現,品牌個性與自我概念之間的一致性會導向正面的消費者反應,例如:增加品牌偏好度、品牌忠誠度、購買意願、良好的口碑等等。因此,品牌管理者將品牌個性視為品牌策略中不可或缺的關鍵,藉此與同市場中的競爭對手做出區別,並建立無形的品牌獨特性,鎖定特定客戶群和制定定位策略。品牌管理者會試圖衡量公司以及品牌企圖建立的品牌個性,是否有確實地被消費者感受到。過去衡量消費者感受到之品牌個性,大都是以問卷或訪問的形式來做評估,但這類方法不僅費時費力,也難於長期頻繁地去監控不同地域的消費者對品牌個性感受的程度差異以及行銷活動或負面公司醜聞對於品牌個性的影響。
而隨著消費者愈來愈習慣在不同產品評論和社群媒體平台上發表對品牌的經驗與意見,這些使用者生成內容正不斷地蓬勃累積。因此本研究提出一個套用機器學習的方法,對大量使用者生成內容進行文字探勘,包括產品評論與推特推文,從文字中擷取出隱含的消費者感受與資訊,藉此預測與評估消費者感受之品牌個性。我們的實驗結果也顯示我們提出的方法能有效地評估消費者感受之品牌個性。希望此方法可以提供品牌管理者們一個易於實作、低成本、即時、有效的方式來與問卷調查的結果做互補和相互驗證,進而得到更具可靠性的評估結果。 | zh_TW |
| dc.description.abstract | Brand personality is defined as “a set of human characteristics associated with a brand,” which personifies a brand with human personality traits. In contract to functional product-related attributes, brand personality serves as symbolic usage for customers’ need of self-expression; hence customers prefer brands with brand personality that matches their actual or ideal selves. Furthermore, prior studies also suggest that greater congruence between brand personality and self-concept leads to positive customer responses. Accordingly, brand managers view brand personality as a key of brand positioning strategy and seek to ensure the consistency between company-intended brand personality and customer-perceived brand personality. Traditionally, marketers often use the survey-based approach to assess customers’ perceptions of brand personality. However, this traditional approach constantly suffers from several limitations.
Nowadays, in order to understand customers’ opinions, many researchers have utilized user-generated content (UGC) available in product review platforms or social media on the Internet. Therefore, this research aims to develop a social-media-based approach for predicting and measuring customer-perceived brand personality by exploiting machine learning methods and utilizing UGC data. Our empirical evaluations suggest our social-media-based brand personality prediction method attains a satisfactory effectiveness and outperforms the benchmark methods. In addition, our proposed method with tweets as the data source achieves greater effectiveness than that with product reviews as the data source does. Our proposed method provides an easy-to-implement, low-cost and real-time approach that is a complement to the traditional survey-based approach. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-17T04:40:29Z (GMT). No. of bitstreams: 1 ntu-107-R05725002-1.pdf: 1525447 bytes, checksum: 10e9a4e75b6477b76ca07abba3b8a5e4 (MD5) Previous issue date: 2018 | en |
| dc.description.tableofcontents | 致謝 ii
中文摘要 iii Abstract iv Table of Contents v List of Tables viii List of Figures ix Chapter 1 Introduction 1 1.1 Background 1 1.2 Research Motivation and Objectives 2 1.3 Research Questions 4 Chapter 2 Literature Review 5 2.1 Brand Personality Scales 5 2.2 Measuring Brand Personality 8 2.2.1 Survey-based Approach 8 2.2.2 Text-based Approach 9 2.3 Modeling Human Personality with Psycholinguistic Lexicon 12 Chapter 3 Methodology 14 3.1 Data Collection 15 3.2 Text Preprocessing 15 3.3 Document Vectorization 16 3.3.1 Vector Space Model 16 3.3.2 Latent Semantic Indexing Model 17 3.3.3 Word2Vec Document Model 18 3.4 Modeling Brand Personality 20 Chapter 4 Empirical Evaluation 21 4.1 Ground Truth Collection 21 4.2 User-Generated Content Collection 23 4.2.1 Product Reviews Collection 24 4.2.2 Tweets Collection 25 4.3 Experimental Results 26 4.3.1 Parameter Tuning 27 4.3.2 Comparative Evaluation Results 29 4.3.3 Content Quality Weighting 35 4.4 Summary of Evaluation 37 Chapter 5 Conclusions 39 5.1 Contributions 39 5.2 Future Work 39 References 42 Appendix A: LIWC2007 Category List 48 Appendix B: Brand List of BrandZTM Database 49 Appendix C: Numbers of Samples in Categories Used in Tweets Labeled as High/ Low in Each Brand Personality 52 Appendix D: Overview of Used UGC Dataset 54 | |
| dc.language.iso | en | |
| dc.subject | 品牌個性 | zh_TW |
| dc.subject | 使用者生成內容 | zh_TW |
| dc.subject | 文字探勘 | zh_TW |
| dc.subject | 產品評論 | zh_TW |
| dc.subject | 推特推文 | zh_TW |
| dc.subject | tweet | en |
| dc.subject | text mining | en |
| dc.subject | user-generated content | en |
| dc.subject | brand personality | en |
| dc.subject | product review | en |
| dc.title | 使用使用者生成內容預測消費者感受之品牌個性 | zh_TW |
| dc.title | Using User-Generated Content for Predicting Customer-Perceived Brand Personality | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 106-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 謝依靜(Yi-Ching Hsieh),胡雅涵(Ya-Han Hu) | |
| dc.subject.keyword | 品牌個性,使用者生成內容,文字探勘,產品評論,推特推文, | zh_TW |
| dc.subject.keyword | brand personality,text mining,user-generated content,tweet,product review, | en |
| dc.relation.page | 58 | |
| dc.identifier.doi | 10.6342/NTU201802635 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2018-08-07 | |
| dc.contributor.author-college | 管理學院 | zh_TW |
| dc.contributor.author-dept | 資訊管理學研究所 | zh_TW |
| 顯示於系所單位: | 資訊管理學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-107-1.pdf 未授權公開取用 | 1.49 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
