Please use this identifier to cite or link to this item:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/70838Full metadata record
| ???org.dspace.app.webui.jsptag.ItemTag.dcfield??? | Value | Language |
|---|---|---|
| dc.contributor.advisor | 廖淑貞(Shwu-Jen Liaw) | |
| dc.contributor.author | Wei-Syuan Huang | en |
| dc.contributor.author | 黃偉軒 | zh_TW |
| dc.date.accessioned | 2021-06-17T04:40:27Z | - |
| dc.date.available | 2020-08-27 | |
| dc.date.copyright | 2020-08-27 | |
| dc.date.issued | 2020 | |
| dc.date.submitted | 2020-08-21 | |
| dc.identifier.citation | 1. Lalonde, S.V. and K.O. Konhauser, Benthic perspective on Earth's oldest evidence for oxygenic photosynthesis. Proc Natl Acad Sci U S A, 2015. 112(4): p. 995-1000. 2. Dupont, C.L., G. Grass, and C. Rensing, Copper toxicity and the origin of bacterial resistance--new insights and applications. Metallomics, 2011. 3(11): p. 1109-18. 3. Horn, D. and A. Barrientos, Mitochondrial copper metabolism and delivery to cytochrome c oxidase. IUBMB Life, 2008. 60(7): p. 421-9. 4. Klinman, J.P., The copper-enzyme family of dopamine beta-monooxygenase and peptidylglycine alpha-hydroxylating monooxygenase: resolving the chemical pathway for substrate hydroxylation. J Biol Chem, 2006. 281(6): p. 3013-6. 5. Bhuvanasundar, R., et al., A molecular model of human Lysyl Oxidase (LOX) with optimal copper orientation in the catalytic cavity for induced fit docking studies with potential modulators. Bioinformation, 2014. 10(7): p. 406-12. 6. Fukai, T. and M. Ushio-Fukai, Superoxide dismutases: role in redox signaling, vascular function, and diseases. Antioxid Redox Signal, 2011. 15(6): p. 1583-606. 7. Prohaska, J.R., Impact of copper limitation on expression and function of multicopper oxidases (ferroxidases). Adv Nutr, 2011. 2(2): p. 89-95. 8. Anderson, G.J., et al., The Ceruloplasmin Homolog Hephaestin and the Control of Intestinal Iron Absorption. Blood Cells, Molecules, and Diseases, 2002. 29(3): p. 367-375. 9. Ramsden, C.A. and P.A. Riley, Tyrosinase: the four oxidation states of the active site and their relevance to enzymatic activation, oxidation and inactivation. Bioorg Med Chem, 2014. 22(8): p. 2388-95. 10. Liochev, S.I. and I. Fridovich, The Haber-Weiss cycle -- 70 years later: an alternative view. Redox Rep, 2002. 7(1): p. 55-7; author reply 59-60. 11. Yoshida, Y., S. Furuta, and E. Niki, Effects of metal chelating agents on the oxidation of lipids induced by copper and iron. Biochim Biophys Acta, 1993. 1210(1): p. 81-8. 12. Imlay, J. and S. Linn, DNA damage and oxygen radical toxicity. Science, 1988. 240(4857): p. 1302-1309. 13. Stadtman, E.R., Protein oxidation and aging. Free Radic Res, 2006. 40(12): p. 1250-8. 14. Macomber, L., C. Rensing, and J.A. Imlay, Intracellular copper does not catalyze the formation of oxidative DNA damage in Escherichia coli. J Bacteriol, 2007. 189(5): p. 1616-26. 15. Chaturvedi, K.S. and J.P. Henderson, Pathogenic adaptations to host-derived antibacterial copper. Front Cell Infect Microbiol, 2014. 4: p. 3. 16. Hiniker, A., J.F. Collet, and J.C. Bardwell, Copper stress causes an in vivo requirement for the Escherichia coli disulfide isomerase DsbC. J Biol Chem, 2005. 280(40): p. 33785-91. 17. Smith, R.C., V.D. Reed, and W.E. Hill, Oxidation Of Thiols By Copper(II). Phosphorus, Sulfur, and Silicon and the Related Elements, 1994. 90(1-4): p. 147-154. 18. Macomber, L. and J.A. Imlay, The iron-sulfur clusters of dehydratases are primary intracellular targets of copper toxicity. Proc Natl Acad Sci U S A, 2009. 106(20): p. 8344-9. 19. Beswick, P.H., et al., Copper toxicity: Evidence for the conversion of cupric to cuprous copper in vivo under anaerobic conditions. Chemico-Biological Interactions, 1976. 14(3-4): p. 347-356. 20. Outten, F.W., et al., The independent cue and cus systems confer copper tolerance during aerobic and anaerobic growth in Escherichia coli. J Biol Chem, 2001. 276(33): p. 30670-7. 21. Singh, S.K., et al., Cuprous oxidase activity of CueO from Escherichia coli. J Bacteriol, 2004. 186(22): p. 7815-7. 22. Besold, A.N., E.M. Culbertson, and V.C. Culotta, The Yin and Yang of copper during infection. J Biol Inorg Chem, 2016. 21(2): p. 137-44. 23. Ding, C., et al., Cryptococcus neoformans copper detoxification machinery is critical for fungal virulence. Cell Host Microbe, 2013. 13(3): p. 265-76. 24. Ilback, N.G., et al., Gastrointestinal uptake of trace elements are changed during the course of a common human viral (Coxsackievirus B3) infection in mice. J Trace Elem Med Biol, 2008. 22(2): p. 120-30. 25. Cernat, R.I., et al., Serum trace metal and ceruloplasmin variability in individuals treated for pulmonary tuberculosis. Int J Tuberc Lung Dis, 2011. 15(9): p. 1239-45, i. 26. Hellman, N.E. and J.D. Gitlin, Ceruloplasmin metabolism and function. Annu Rev Nutr, 2002. 22: p. 439-58. 27. Kono, S., et al., Hepatic iron overload associated with a decreased serum ceruloplasmin level in a novel clinical type of aceruloplasminemia. Gastroenterology, 2006. 131(1): p. 240-5. 28. Nittis, T. and J.D. Gitlin, The copper-iron connection: Hereditary aceruloplasminemia. Seminars in Hematology, 2002. 39(4): p. 282-289. 29. Hyre, A.N., et al., Copper Is a Host Effector Mobilized to Urine during Urinary Tract Infection To Impair Bacterial Colonization. Infect Immun, 2017. 85(3). 30. Subashchandrabose, S., et al., Host-specific induction of Escherichia coli fitness genes during human urinary tract infection. Proc Natl Acad Sci U S A, 2014. 111(51): p. 18327-32. 31. Wagner, D., et al., Elemental Analysis of Mycobacterium avium-, Mycobacterium tuberculosis-, and Mycobacterium smegmatis-Containing Phagosomes Indicates Pathogen-Induced Microenvironments within the Host Cell's Endosomal System. The Journal of Immunology, 2005. 174(3): p. 1491-1500. 32. White, C., et al., A role for the ATP7A copper-transporting ATPase in macrophage bactericidal activity. J Biol Chem, 2009. 284(49): p. 33949-56. 33. Osman, D., et al., Copper homeostasis in Salmonella is atypical and copper-CueP is a major periplasmic metal complex. J Biol Chem, 2010. 285(33): p. 25259-68. 34. Achard, M.E., et al., Copper redistribution in murine macrophages in response to Salmonella infection. Biochem J, 2012. 444(1): p. 51-7. 35. Douglas, L.M., et al., Sur7 promotes plasma membrane organization and is needed for resistance to stressful conditions and to the invasive growth and virulence of Candida albicans. MBio, 2012. 3(1). 36. Ladomersky, E. and M.J. Petris, Copper tolerance and virulence in bacteria. Metallomics, 2015. 7(6): p. 957-64. 37. Outten, F.W., et al., Transcriptional activation of an Escherichia coli copper efflux regulon by the chromosomal MerR homologue, cueR. J Biol Chem, 2000. 275(40): p. 31024-9. 38. Rensing, C., et al., CopA: An Escherichia coli Cu(I)-translocating P-type ATPase. Proc Natl Acad Sci U S A, 2000. 97(2): p. 652-6. 39. Grass, G. and C. Rensing, Genes involved in copper homeostasis in Escherichia coli. J Bacteriol, 2001. 183(6): p. 2145-7. 40. Munson, G.P., et al., Identification of a copper-responsive two-component system on the chromosome of Escherichia coli K-12. J Bacteriol, 2000. 182(20): p. 5864-71. 41. Franke, S., et al., Molecular analysis of the copper-transporting efflux system CusCFBA of Escherichia coli. J Bacteriol, 2003. 185(13): p. 3804-12. 42. Padilla-Benavides, T., et al., Mechanism of ATPase-mediated Cu+ export and delivery to periplasmic chaperones: the interaction of Escherichia coli CopA and CusF. J Biol Chem, 2014. 289(30): p. 20492-501. 43. Kim, J.S., et al., The sctR of Salmonella enterica serova Typhimurium encoding a homologue of MerR protein is involved in the copper-responsive regulation of cuiD. FEMS Microbiol Lett, 2002. 210(1): p. 99-103. 44. Pezza, A., et al., Compartment and signal-specific codependence in the transcriptional control of Salmonella periplasmic copper homeostasis. Proc Natl Acad Sci U S A, 2016. 113(41): p. 11573-11578. 45. Checa, S.K., et al., Bacterial sensing of and resistance to gold salts. Mol Microbiol, 2007. 63(5): p. 1307-18. 46. Samanovic, M.I., et al., Copper in microbial pathogenesis: meddling with the metal. Cell Host Microbe, 2012. 11(2): p. 106-15. 47. Osman, D., et al., The copper supply pathway to a Salmonella Cu,Zn-superoxide dismutase (SodCII) involves P(1B)-type ATPase copper efflux and periplasmic CueP. Mol Microbiol, 2013. 87(3): p. 466-77. 48. Yazdankhah, S., K. Rudi, and A. Bernhoft, Zinc and copper in animal feed - development of resistance and co-resistance to antimicrobial agents in bacteria of animal origin. Microb Ecol Health Dis, 2014. 25. 49. Monteiro, S.C., S. Lofts, and A.B.A. Boxall, Pre‐assessment of environmental impact of zinc and copper used in animal nutrition. EFSA Supporting Publications, 2010. 7(9). 50. Amachawadi, R.G., et al., Selection of fecal enterococci exhibiting tcrB-mediated copper resistance in pigs fed diets supplemented with copper. Appl Environ Microbiol, 2011. 77(16): p. 5597-603. 51. Hasman, H., et al., Copper resistance in Enterococcus faecium, mediated by the tcrB gene, is selected by supplementation of pig feed with copper sulfate. Appl Environ Microbiol, 2006. 72(9): p. 5784-9. 52. Freitas, A.R., et al., Human and swine hosts share vancomycin-resistant Enterococcus faecium CC17 and CC5 and Enterococcus faecalis CC2 clonal clusters harboring Tn1546 on indistinguishable plasmids. J Clin Microbiol, 2011. 49(3): p. 925-31. 53. Jacob, M.E., et al., Effects of feeding elevated concentrations of copper and zinc on the antimicrobial susceptibilities of fecal bacteria in feedlot cattle. Foodborne Pathog Dis, 2010. 7(6): p. 643-8. 54. Poole, K., At the Nexus of Antibiotics and Metals: The Impact of Cu and Zn on Antibiotic Activity and Resistance. Trends Microbiol, 2017. 25(10): p. 820-832. 55. Caille, O., C. Rossier, and K. Perron, A copper-activated two-component system interacts with zinc and imipenem resistance in Pseudomonas aeruginosa. J Bacteriol, 2007. 189(13): p. 4561-8. 56. Rao, M., et al., A copper-responsive global repressor regulates expression of diverse membrane-associated transporters and bacterial drug resistance in mycobacteria. J Biol Chem, 2012. 287(47): p. 39721-31. 57. Kaur, K., et al., Multicopper oxidases: Biocatalysts in microbial pathogenesis and stress management. Microbiol Res, 2019. 222: p. 1-13. 58. Djoko, K.Y., et al., Reaction mechanisms of the multicopper oxidase CueO from Escherichia coli support its functional role as a cuprous oxidase. J Am Chem Soc, 2010. 132(6): p. 2005-15. 59. Rensing, C. and G. Grass, Escherichia colimechanisms of copper homeostasis in a changing environment. FEMS Microbiology Reviews, 2003. 27(2-3): p. 197-213. 60. Stolle, P., B. Hou, and T. Bruser, The Tat Substrate CueO Is Transported in an Incomplete Folding State. J Biol Chem, 2016. 291(26): p. 13520-8. 61. Grass, G. and C. Rensing, CueO is a multi-copper oxidase that confers copper tolerance in Escherichia coli. Biochem Biophys Res Commun, 2001. 286(5): p. 902-8. 62. Kim, C., et al., Oxidation of phenolate siderophores by the multicopper oxidase encoded by the Escherichia coli yacK gene. J Bacteriol, 2001. 183(16): p. 4866-75. 63. Grass, G., et al., Linkage between catecholate siderophores and the multicopper oxidase CueO in Escherichia coli. J Bacteriol, 2004. 186(17): p. 5826-33. 64. Achard, M.E., et al., The multi-copper-ion oxidase CueO of Salmonella enterica serovar Typhimurium is required for systemic virulence. Infect Immun, 2010. 78(5): p. 2312-9. 65. Hall, S.J., et al., A Multicopper oxidase (Cj1516) and a CopA homologue (Cj1161) are major components of the copper homeostasis system of Campylobacter jejuni. J Bacteriol, 2008. 190(24): p. 8075-85. 66. Wen, Q., et al., A versatile and efficient markerless gene disruption system for Acidithiobacillus thiooxidans: application for characterizing a copper tolerance related multicopper oxidase gene. Environ Microbiol, 2014. 16(11): p. 3499-514. 67. Mancini, S., et al., Desulfovibrio DA2_CueO is a novel multicopper oxidase with cuprous, ferrous and phenol oxidase activity. Microbiology, 2017. 163(8): p. 1229-1236. 68. Kammler, M., C. Schon, and K. Hantke, Characterization of the ferrous iron uptake system of Escherichia coli. J Bacteriol, 1993. 175(19): p. 6212-9. 69. Huston, W.M., M.P. Jennings, and A.G. McEwan, The multicopper oxidase of Pseudomonas aeruginosa is a ferroxidase with a central role in iron acquisition. Mol Microbiol, 2002. 45(6): p. 1741-50. 70. Lim, S.Y., et al., cuiD is a crucial gene for survival at high copper environment in Salmonella enterica serovar typhimurium. Molecules and Cells, 2002. 14(2): p. 177-184. 71. Tree, J.J., et al., Trade-off between iron uptake and protection against oxidative stress: deletion of cueO promotes uropathogenic Escherichia coli virulence in a mouse model of urinary tract infection. J Bacteriol, 2008. 190(20): p. 6909-12. 72. Rozalski, A., Z. Sidorczyk, and K. Kotelko, Potential virulence factors of Proteus bacilli. Microbiol Mol Biol Rev, 1997. 61(1): p. 65-89. 73. Foris, L. and J. Snowden, Proteus Mirabilis Infections, in StatPearls. 2017, StatPearls Publishing StatPearls Publishing LLC.: Treasure Island (FL). 74. Schaffer, J.N. and M.M. Pearson, Proteus mirabilis and Urinary Tract Infections. Microbiology spectrum, 2015. 3(5): p. 10.1128/microbiolspec.UTI-0017-2013. 75. Armbruster, C.E. and H.L. Mobley, Merging mythology and morphology: the multifaceted lifestyle of Proteus mirabilis. Nat Rev Microbiol, 2012. 10(11): p. 743-54. 76. Mobley, H.L., et al., Construction of a flagellum-negative mutant of Proteus mirabilis: effect on internalization by human renal epithelial cells and virulence in a mouse model of ascending urinary tract infection. Infect Immun, 1996. 64(12): p. 5332-40. 77. Mobley, H.L., et al., Cytotoxicity of the HpmA hemolysin and urease of Proteus mirabilis and Proteus vulgaris against cultured human renal proximal tubular epithelial cells. Infect Immun, 1991. 59(6): p. 2036-42. 78. Jacobsen, S.M. and M.E. Shirtliff, Proteus mirabilis biofilms and catheter-associated urinary tract infections. Virulence, 2011. 2(5): p. 460-5. 79. Coker, C., et al., Pathogenesis of Proteus mirabilis urinary tract infection. Microbes Infect, 2000. 2(12): p. 1497-505. 80. Walker, K.E., et al., ZapA, the IgA-degrading metalloprotease of Proteus mirabilis, is a virulence factor expressed specifically in swarmer cells. Molecular Microbiology, 1999. 32(4): p. 825-836. 81. Senior, B.W., L.M. Loomes, and M.A. Kerr, The production and activity in vivo of Proteus mirabilis IgA protease in infections of the urinary tract. J Med Microbiol, 1991. 35(4): p. 203-7. 82. Drechsel, H., et al., Alpha-keto acids are novel siderophores in the genera Proteus, Providencia, and Morganella and are produced by amino acid deaminases. J Bacteriol, 1993. 175(9): p. 2727-33. 83. Harshey, R.M., Bacterial motility on a surface: many ways to a common goal. Annu Rev Microbiol, 2003. 57: p. 249-73. 84. Rauprich, O., et al., Periodic phenomena in Proteus mirabilis swarm colony development. J Bacteriol, 1996. 178(22): p. 6525-38. 85. Givskov, M., et al., Two separate regulatory systems participate in control of swarming motility of Serratia liquefaciens MG1. J Bacteriol, 1998. 180(3): p. 742-5. 86. Armbruster, C.E., et al., Genome-wide transposon mutagenesis of Proteus mirabilis: Essential genes, fitness factors for catheter-associated urinary tract infection, and the impact of polymicrobial infection on fitness requirements. PLoS Pathog, 2017. 13(6): p. e1006434. 87. Torzewska, A. and A. Rozalski, Various intensity of Proteus mirabilis-induced crystallization resulting from the changes in the mineral composition of urine. Acta Biochim Pol, 2015. 62(1): p. 127-32. 88. Jiang, S.S., et al., Characterization of UDP-glucose dehydrogenase and UDP-glucose pyrophosphorylase mutants of Proteus mirabilis: defectiveness in polymyxin B resistance, swarming, and virulence. Antimicrob Agents Chemother, 2010. 54(5): p. 2000-9. 89. Schweizer, H.P. and T.T. Hoang, An improved system for gene replacement and xylE fusion analysis in Pseudomonas aeruginosa. Gene, 1995. 158(1): p. 15-22. 90. Nishino, K., E. Nikaido, and A. Yamaguchi, Regulation of multidrug efflux systems involved in multidrug and metal resistance of Salmonella enterica serovar Typhimurium. J Bacteriol, 2007. 189(24): p. 9066-75. 91. Su, S., et al., Catalase (KatA) plays a role in protection against anaerobic nitric oxide in Pseudomonas aeruginosa. PLoS One, 2014. 9(3): p. e91813. 92. Dip, P.V., et al., Key roles of the Escherichia coli AhpC C-terminus in assembly and catalysis of alkylhydroperoxide reductase, an enzyme essential for the alleviation of oxidative stress. Biochim Biophys Acta, 2014. 1837(12): p. 1932-1943. 93. Lopez, C., S.K. Checa, and F.C. Soncini, CpxR/CpxA Controls scsABCD Transcription To Counteract Copper and Oxidative Stress in Salmonella enterica Serovar Typhimurium. J Bacteriol, 2018. 200(16). 94. Clemmer, K.M. and P.N. Rather, Regulation of flhDC expression in Proteus mirabilis. Res Microbiol, 2007. 158(3): p. 295-302. 95. Yamamoto, K. and A. Ishihama, Characterization of copper-inducible promoters regulated by CpxA/CpxR in Escherichia coli. Biosci Biotechnol Biochem, 2006. 70(7): p. 1688-95. 96. Chen, H.H., et al., A CpxR-Regulated zapD Gene Involved in Biofilm Formation of Uropathogenic Proteus mirabilis. Infect Immun, 2020. 88(7). 97. Gendlina, I., et al., Urea-dependent signal transduction by the virulence regulator UreR. J Biol Chem, 2002. 277(40): p. 37349-58. 98. Armbruster, C.E., H.L.T. Mobley, and M.M. Pearson, Pathogenesis of Proteus mirabilis Infection. EcoSal Plus, 2018. 8(1). 99. Yamaguchi, K., et al., Characterization of metal-substituted Klebsiella aerogenes urease. J Biol Inorg Chem, 1999. 4(4): p. 468-77. 100. Elguindi, J., et al., Advantages and challenges of increased antimicrobial copper use and copper mining. Appl Microbiol Biotechnol, 2011. 91(2): p. 237-49. 101. Steinhauer, K., et al., Antimicrobial efficacy and compatibility of solid copper alloys with chemical disinfectants. PLoS One, 2018. 13(8): p. e0200748. 102. Straub, K.L., M. Benz, and B. Schink, Iron metabolism in anoxic environments at near neutral pH. FEMS Microbiol Ecol, 2001. 34(3): p. 181-186. 103. Sestok, A.E., R.O. Linkous, and A.T. Smith, Toward a mechanistic understanding of Feo-mediated ferrous iron uptake. Metallomics, 2018. 10(7): p. 887-898. 104. Kim, Y.G., et al., Antibiofilm activity of Streptomyces sp. BFI 230 and Kribbella sp. BFI 1562 against Pseudomonas aeruginosa. Appl Microbiol Biotechnol, 2012. 96(6): p. 1607-17. 105. Lin, C.S., et al., An iron detection system determines bacterial swarming initiation and biofilm formation. Sci Rep, 2016. 6: p. 36747. 106. Lutkenhaus, J., S. Pichoff, and S. Du, Bacterial cytokinesis: From Z ring to divisome. Cytoskeleton (Hoboken), 2012. 69(10): p. 778-90. 107. Tarry, M., et al., The Escherichia coli cell division protein and model Tat substrate SufI (FtsP) localizes to the septal ring and has a multicopper oxidase-like structure. J Mol Biol, 2009. 386(2): p. 504-19. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/70838 | - |
| dc.description.abstract | 銅,為生命必須微量元素,但累績過多卻也對細胞造成氧化傷害。因此,細菌演化出銅解毒系統嚴格調控體內銅含量。革蘭氏陰性的Proteus mirabilis為臨床常見的尿道致病菌,常伺機感染長期植入尿導管的病人。研究發現人體泌尿道感染時,尿銅濃度顯著增加作為抵禦病菌的武器。因此,本文的目的欲探討銅對於P. mirabilis毒力因子的影響。我們發現在不影響生長的1 mM銅濃度下可抑制P. mirabilis的表面移行能力,泳動、溶血素、尿素酶與細胞分化也受到抑制,但提升生物膜生成能力。此外,低濃度的銅則提升抗氧化能力,但不影響藥物感受性。 我們利用transcriptome搭配蛋白質直系同源群(COGs)分析,發現參與細胞分化的基因中cueO受銅induce最多,為了探討CueO對於P. mirabilis表面移行是否扮演角色,我們先過度表現cueO發現移行能力與細胞分化受抑制,之後構築cueO突變株,分析其與野生株在表現型的差異。結果顯示cueO突變株的表面移行與細胞分化提升,泳動、鞭毛生成、生物膜生成、尿素酶活性與尿結石生成能力與野生株並無差異,而抗氧化能力則顯著下降。此結果顯示CueO不參與在銅抑制鞭毛表現的路徑,但是參與P. mirabilis細胞分化。已有研究顯示UPEC與Pseudomonas aeruginosa中CueO與Fe3+ permease共同參與Fe2+的攝取調控。UPEC cueO缺失造成Fe2+累積且UPEC與Salmonella cueO缺失皆導致對H2O2感受性提升。我們推論cueO突變株的抗氧化能力下降可能肇因於細菌體內Fe2+累積,也暗示P. mirabilis cueO在鐵攝取可能扮演角色。 已有許多研究顯示,當細菌遇到外界銅壓力時,CueR結合Cu+活化並提升cueO及copA的表現,CopA為P-type ATPase將Cu+ pump out periplasm,再由CueO將Cu+氧化為毒性較低的Cu2+。為了探討P. mirabilis是否也具有這樣的調控路徑,我們用real-time PCR證明1 mM銅環境下copA與cueO基因表現增加,兩者的promoter活性在有銅環境下也顯著提升。最後,利用實驗室前人建構的cueR跳躍子突變株證明銅透過CueR的參與正調控copA與cueO。 總結,當外界出現銅壓力,P. mirabilis透過CueR提升cue銅解毒系統cueO與copA基因表現進而緩解銅毒性,cueO增加抑制細胞分化,銅壓力則可能透過其他路徑抑制flhDC表現導致表面移行能力下降。CueO在P. mirabilis除了緩解銅毒性也對抗氧化能力扮演角色,不排除在鐵攝取調控也扮演角色。 | zh_TW |
| dc.description.abstract | Copper, an essential trace element for all lives but toxic when intracellular accumulation, is also an anti-microbial agent used by the human immune system. Researches show that cooper effects bacterial virulence, thus, bacteria evolve copper detoxification system to maintain intracellular homeostasis. Proteus mirabilis with swarming characteristic often causes catheter-associated urinary tract infection, however, the effects of copper on P. mirabilis remains unclear. First, we found that 1 mM of copper decreased the swarming motility but not effected the growth, and reduced swimming motility, haemolysin, urease activity but enhance biofilm formation under this condition. To investigate the effect of copper on swarming motility, flagellin level and cell differentiation were examined. We found that flagellin levels significantly reduced and shorter swarmer cells under copper stress. Using transcriptomic analysis and the clusters of orthologous groups of proteins database, we found that cueO, encoding a periplasmic multicopper oxidase, increased 29-fold in cell division category. We further investigate the role of cueO in cell differentiation and found that overexpression cueO decreased swarming motility and swarmer cell length. Then, we constructed the cueO mutant and found that enhanced swarming motility and cell differentiation compared to wild-type. Loss of cueO did not affect swimming motility, flagella levels, biofilm forming ability, urease activity and urine stone-forming ability, suggesting that cueO may play a role in cell differentiation in P. mirabilis. Researches showed that CueO took part in ferrous iron acquisition with ferric iron permease in UPEC and Pseudomonas aeruginosa, loss of cueO caused ferrous iron accumulation and increased H2O2 sensitivity in UPEC and Salmonella, respectively. Our data indicated that lower tolerance of oxidative stress in the cueO mutant may due to ferrous iron accumulation. When encountered environmental copper stress, CueR sensed copper and upregulated copA and cueO for detoxification in many bacteria. A putative cue detoxification system encoded by cueO, cueR, and copA, was found in P. mirabilis and showed high protein similarities to E. coli. We confirmed that the copper-induced expression of cueO and copA through CueR regulation. In summary, CueR activated cue detoxification system through upregulating cueO and copA under copper stress in P. mirabilis. Upregulation of cueO affected cell differentiation, and copper stress, instead, reduced flhDC expression via unknown regulators. Both contributed to reducing swarming motility under copper stress in P. mirabilis. Also, cueO may play a role in ferrous iron uptake and alleviation of oxidative stress in P. mirabilis. To the best of our knowledge, this is the first report investigating the effects of copper on virulence factors and the role of cueO in P. mirabilis. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-17T04:40:27Z (GMT). No. of bitstreams: 1 U0001-2008202014352300.pdf: 4684214 bytes, checksum: 7306870e8d261a38455e3216177da902 (MD5) Previous issue date: 2020 | en |
| dc.description.tableofcontents | 誌謝 I 摘要 II Abstract IV 目錄 VI 圖目錄 VIII 表目錄 IX 第一章 緒論 1 第一節 銅的化學性質與生物特性 1 第二節 銅的生物毒性 1 第三節 銅在人體先天免疫的角色 2 第四節 細菌的銅恆定系統 3 第五節 銅對細菌抗藥性的影響 4 第六節 CueO之基本介紹與在細菌中的角色 5 第七節 奇異變形桿菌 (Proteus mirabilis) 基本介紹 7 第八節 P. mirabilis的毒力因子 7 第九節 P. mirabilis的表面移行能力及其調控 9 第十節 研究動機與目的 10 第二章 實驗材料與方法 11 第一節 實驗設計 11 第二節 實驗材料 12 第三節 分析表現型 (phenotype) 與毒力因子 (virulence factor) 15 第四節 構築質體方法 26 第五節 基因表達 36 第六節 P. mirabilis cueO突變株建構方法 48 第三章 實驗結果 53 第一節 銅對於P. mirabilis野生株之生長與毒力因子影響分析 53 第二節 分析野生株在有銅環境下在細胞分化相關基因之影響 56 第三節 P. mirabilis cueO突變株之建構與確認 57 第四節 cueO突變株表現型及毒力因子之分析 58 第五節 cueO及其cue銅解毒系統 61 第四章 結論與討論 63 第一節 結論 63 第二節 討論 64 第五章 表 67 第六章 圖 72 參考文獻 87 附錄 95 得獎紀錄 107 | |
| dc.language.iso | zh-TW | |
| dc.subject | 銅 | zh_TW |
| dc.subject | 奇異變形桿菌 | zh_TW |
| dc.subject | 表面移行 | zh_TW |
| dc.subject | 抗氧化壓力 | zh_TW |
| dc.subject | 銅解毒系統 | zh_TW |
| dc.subject | 金屬壓力 | zh_TW |
| dc.subject | 細胞分化 | zh_TW |
| dc.subject | proteus | en |
| dc.subject | copper | en |
| dc.subject | cell differentiation | en |
| dc.subject | metal stress | en |
| dc.subject | detoxification | en |
| dc.subject | oxidative stress | en |
| dc.subject | swarming | en |
| dc.subject | mirabilis | en |
| dc.title | 探討銅離子於尿道致病性奇異變形桿菌中表面移行與抗氧化壓力所扮演的角色及其銅解毒系統 | zh_TW |
| dc.title | The effects of copper on swarming motility, oxidative stress tolerance and the copper detoxification system in uropathogenic Proteus mirabilis | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 108-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 鄧麗珍(Lee-Jene Teng),楊翠青(Tsuey-Ching Yang) | |
| dc.subject.keyword | 銅,奇異變形桿菌,表面移行,抗氧化壓力,銅解毒系統,金屬壓力,細胞分化, | zh_TW |
| dc.subject.keyword | copper,proteus,mirabilis,swarming,oxidative stress,detoxification,metal stress,cell differentiation, | en |
| dc.relation.page | 107 | |
| dc.identifier.doi | 10.6342/NTU202004136 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2020-08-24 | |
| dc.contributor.author-college | 醫學院 | zh_TW |
| dc.contributor.author-dept | 醫事技術學研究所 | zh_TW |
| Appears in Collections: | 醫學檢驗暨生物技術學系 | |
Files in This Item:
| File | Size | Format | |
|---|---|---|---|
| U0001-2008202014352300.pdf Restricted Access | 4.57 MB | Adobe PDF |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.
