請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/70836完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 陳希立 | |
| dc.contributor.author | Yen-Cheng Chiang | en |
| dc.contributor.author | 姜彥丞 | zh_TW |
| dc.date.accessioned | 2021-06-17T04:40:22Z | - |
| dc.date.available | 2022-08-09 | |
| dc.date.copyright | 2018-08-09 | |
| dc.date.issued | 2018 | |
| dc.date.submitted | 2018-08-06 | |
| dc.identifier.citation | [1] L. Pérez-Lombard, J. Ortiz, and C. Pout, 'A review on buildings energy consumption information,' Energy and buildings, vol. 40, no. 3, pp. 394-398, 2008.
[2] PSG Facility Services. Typical building energy consumption. Available: http://psgfacilityservices.com/services/hvac-service-maintenance [3] 經濟部能源局, 能源產業技術白皮書. 2010. [4] 經濟部能源局, 產業泵浦效率管理節能技術手冊. 2008. [5] D. Kaya, E. A. Yagmur, K. S. Yigit, F. C. Kilic, A. S. Eren, and C. Celik, 'Energy efficiency in pumps,' Energy Conversion and Management, vol. 49, no. 6, pp. 1662-1673, 2008. [6] 陳健明, '不可逆性分析應用於多功能熱泵熱水機開發之研究,' 碩士, 能源與冷凍空調工程系, 國立台北科技大學, 2008. [7] G. Morrison, T. Anderson, and M. Behnia, 'Seasonal performance rating of heat pump water heaters,' Solar Energy, vol. 76, no. 1-3, pp. 147-152, 2004. [8] L. Hongmei and T. H. Kuehn, 'Irreversibility analysis of a water-to-water mechanical-compression heat pump,' Energy, vol. 16, no. 6, pp. 883-896, 1991. [9] T.-S. Lee, 'Second-Law analysis to improve the energy efficiency of screw liquid chillers,' Entropy, vol. 12, no. 3, pp. 375-389, 2010. [10] J. Saththasivam and K. Choon Ng, 'Prediction of chiller power consumption: An entropy generation approach,' Heat Transfer Engineering, vol. 38, no. 4, pp. 389-395, 2017. [11] R.-M. Ricardo, H.-L. J. Manuel, D.-G. H. Martín, and P.-V. Arturo, 'Use of artificial neural networks for prediction of convective heat transfer in evaporative units,' Ingeniería, Investigación y Tecnología, vol. 15, no. 1, pp. 93-101, 2014. [12] M. H. Shojaeefard, J. Zare, A. Tabatabaei, and H. Mohammadbeigi, 'Evaluating different types of artificial neural network structures for performance prediction of compact heat exchanger,' Neural Computing and Applications, vol. 28, no. 12, pp. 3953-3965, 2017. [13] 黃仲翊, '外部輸入非線性自動迴歸模型應用於冰水主機耗能分析,' 碩士, 能源與冷凍空調工程研究所, 國立台北科技大學, 2017. [14] W. Kong, Z. Y. Dong, D. J. Hill, F. Luo, and Y. Xu, 'Short-Term Residential Load Forecasting based on Resident Behaviour Learning,' IEEE Transactions on Power Systems, vol. 33, no. 1, pp. 1087-1088, 2018. [15] M. V. Shcherbakov, A. Brebels, N. L. Shcherbakova, A. P. Tyukov, T. A. Janovsky, and V. A. e. Kamaev, 'A survey of forecast error measures,' World Applied Sciences Journal, vol. 24, pp. 171-176, 2013. [16] T. Chai and R. R. Draxler, 'Root mean square error (RMSE) or mean absolute error (MAE)?–Arguments against avoiding RMSE in the literature,' Geoscientific model development, vol. 7, no. 3, pp. 1247-1250, 2014. [17] R. J. Hyndman and A. B. Koehler, 'Another look at measures of forecast accuracy,' International journal of forecasting, vol. 22, no. 4, pp. 679-688, 2006. [18] Q. Zhang, H. Wang, J. Dong, G. Zhong, and X. Sun, 'Prediction of Sea Surface Temperature Using Long Short-Term Memory,' IEEE Geoscience and Remote Sensing Letters, vol. 14, no. 10, pp. 1745-1749, 2017. [19] 董騏鋒, '應用雲端計算於空調設備性能分析,' 碩士, 機械工程研究所, 國立台灣大學, 2017. [20] W. Stoecker and J. Jones, 'Refrigeration and air conditioning, 1982,' Mc GrawHill Book Co, New York. [21] Y. A. Cengel, Fluid mechanics. Tata McGraw-Hill Education, 2010. [22] 小野高麻呂, 現代泵浦實用技術. 復漢出版社, 1991. [23] A. F. Handbook, 'American society of heating, refrigerating and air-conditioning engineers,' in Inc.: Atlanta, GA, USA, 2009. [24] 葉怡成, 實驗計劃法:製程與產品最佳化. 五南出版社, 2001. [25] M. T. Hagan, H. B. Demuth, and M. H. Beale, 'Neural network design (electrical engineering),' Thomson Learning (December 1995), 1995. [26] 蘇木春 and 張孝德, '機器學習: 類神經網路, 模糊系統以及基因演算法則, 全華科技圖書股份有限公司, 台北,' 2004. [27] B. Ramsundar and R. B. Zadeh, TensorFlow for Deep Learning: From Linear Regression to Reinforcement Learning. ' O'Reilly Media, Inc.', 2018. [28] S. Smith, 'AHRI Standard 550/590 (I-P) & 551/591 (SI) Performance Rating of Water-Chilling and Heat Pump Water-Heating Packages Using the Vapor Compression Cycle,' ASHRAE Transactions, vol. 118, p. 317, 2012. [29] D. P. Kingma and J. Ba, 'Adam: A method for stochastic optimization,' arXiv preprint arXiv:1412.6980, 2014. [30] A. Javed, H. Larijani, A. Ahmadinia, and D. Gibson, 'Smart random neural network controller for HVAC using cloud computing technology,' IEEE Transactions on Industrial Informatics, vol. 13, no. 1, pp. 351-360, 2017. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/70836 | - |
| dc.description.abstract | 本研究旨在提供一套診斷系統,利用冷媒側四點溫度、水側四點溫度及主機耗電量測之數據,透過物理理論進一步推算出運轉效率等指標,使診斷能順利進行並提供業者改善方向。另一部分希望發展出一預測系統,透過大量數據建立準確預測壓縮機運轉功率、運轉效率等模型之方法,以應用在各企業中準確預測耗能,達成長期監控的目標。
本論文主要透過中龍鋼鐵的冰水主機與箱型主機兩案例,驗證空調分析系統推算之運轉效率、水泵效率與不可逆性是否符合實際趨勢,比較不同的多元複迴歸模型與遞歸神經網路之預測誤差,實驗長短期記憶(Long Short-Term Memory, LSTM)架構應用於主機性能等參數預測的可行性。 研究結果顯示,空調性能分析系統應用在即時的空調診斷是可行的,推算之性能係數、水泵效率與不可逆性皆符合理論。LSTM應用於空調主機性能的預測模型是準確的,在預測冷卻水出水溫、冰水出水溫、壓縮機功率和性能係數等表現,因為LSTM擁有對時間序列的記憶性,相較於多元複迴歸穩定且準確。本研究驗證了使用八點溫度來診斷空調的可能性,去除壓力與流量的量測,使空調的性能分析能夠以更簡易且快速的實行,提供在實務上空調診斷的替代方案。 | zh_TW |
| dc.description.abstract | The purpose of this study is to set up an analysis system for air conditioning systems. The first part of the system was construct based on physics. For this purpose; the temperature of refrigerant, temperature and flow rate of water, and input power of compressor have been measured for calculating the coefficient of efficiency(COP), pump efficiency, and irreversibility. Another aim was to develop a method for predicting the performance of chiller. The models for predicting the outlet temperature, input power of compressor, and COP were constructed based on a large dataset obtained from the experiments. The multiple regressions were compared with long short-term memory(LSTM) based recurrent neural network(RNN) for the prediction error. The objective for the analysis system is to make diagnosis and long term monitoring for air conditioning systems simpler and feasible in the industry.
The experiments were conducted including water cooled chiller and packaged air conditioner which are located at the industrial area of the collaborate company Dragon Steel Co.,Ltd., which is subsidiary of China Steel Co.,Ltd.. To verify the reliability and validity of the two main idea of the study, the examination processes were carried out with these two cases. The results indicate that the analysis system for detecting the performance of chiller and heat pump is practicable. The trend of the COP, pump efficiency, and irreversibility simulated from the analysis system are fit to the theory and the references. On the other hand, the study shows that the LSTM neural network provides the best results due to the strong ability to model the temporal relationship between time series. For each output parameters, LSTM structure performs more accurate and stable than multiple regression. The analysis system only needs to measure the temperature of refrigerant and water which is more easily than pressure drop and flow rate to obtain. The analysis system could be proposed as an alternative method for engineers to diagnosis or monitor air conditioning systems. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-17T04:40:22Z (GMT). No. of bitstreams: 1 ntu-107-R05522312-1.pdf: 2702758 bytes, checksum: a263a0a5824281ebdc20e1dba97c4072 (MD5) Previous issue date: 2018 | en |
| dc.description.tableofcontents | 誌謝 I
摘要 II ABSTRACT III 目錄 V 圖目錄 VIII 表目錄 XI 符號說明 XII 第1章 緒論 1 1.1 前言 1 1.2 文獻回顧 3 1.2.1 空調性能分析系統之文獻回顧 3 1.2.2 類神經網路應用之文獻回顧 4 1.3 研究動機與目的 6 1.4 研究流程 7 第2章 研究原理與方法 10 2.1 空調性能分析系統 10 2.1.1 冷凍循環基礎理論 10 2.1.2 實際蒸氣壓縮冷凍循環 11 2.1.3 蒸氣壓縮冷凍循環四大元件 12 2.1.4 冷凍循環系統之性能係數 14 2.1.5 泵浦之基礎理論 15 2.1.6 第二定律分析(不可逆性分析方法) [9] [23] 19 2.2 類神經網路之應用 20 2.2.1 多元複迴歸分析原理 20 2.2.2 迴歸模型之檢定方法[24] 21 2.2.3 類神經網路簡介 22 2.2.4 遞歸神經網絡 24 2.2.5 長短期記憶網路 25 第3章 實驗設備與研究步驟 27 3.1 實驗主機規格 27 3.1.1 水冷式箱型冷氣機 27 3.1.2 螺旋式冰水主機 27 3.2 量測儀器規格 28 3.2.1 電力分析儀 29 3.2.2 超音波流量計 29 3.2.3 資料擷取器 30 3.2.4 溫度感測器 30 3.3 數據分析軟體 31 3.4 研究步驟 31 3.4.1 量測步驟 31 3.4.2 空調性能分析之實驗架構 33 3.4.3 類神經網路之實驗架構 34 第4章 實驗結果與討論-案例一 36 4.1 量測結果 36 4.2 空調性能分析系統 36 4.2.1 穩態下空調COP計算 37 4.2.2 不可逆性分析 38 4.3 類神經網路之用應用 39 4.3.1 冷卻水出水溫度預測 40 4.3.2 壓縮機功率預測 44 第5章 實驗結果與討論-案例二 47 5.1 量測結果 47 5.2 空調性能分析系統 47 5.2.1 穩態下空調COP計算 48 5.2.2 泵浦效率 49 5.2.3 不可逆性分析 53 5.3 類神經網路之用應用 54 5.3.1 冷卻水出水溫度預測 54 5.3.2 冰水出水溫度預測 57 5.3.3 壓縮機功率預測 59 5.3.4 穩態下製冷COP預測 61 5.3.5 綜合比較 64 第6章 結論與未來展望 65 6.1 結論 65 6.2 未來展望 66 參考文獻 67 | |
| dc.language.iso | zh-TW | |
| dc.subject | 不可逆性分析 | zh_TW |
| dc.subject | 多元複迴歸 | zh_TW |
| dc.subject | 性能係數 | zh_TW |
| dc.subject | 遞歸神經網路 | zh_TW |
| dc.subject | 泵效率 | zh_TW |
| dc.subject | Multiple Regression | en |
| dc.subject | Coefficient of Performance | en |
| dc.subject | Pump Efficiency | en |
| dc.subject | Irreversibility | en |
| dc.subject | Recurrent Neural Network | en |
| dc.title | 應用遞歸神經網路於空調性能分析系統 | zh_TW |
| dc.title | Recurrent Neural Network Applied to Performance Analysis of Air Conditioning Systems | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 106-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 江沅晉,李文興,張至中 | |
| dc.subject.keyword | 性能係數,泵效率,不可逆性分析,多元複迴歸,遞歸神經網路, | zh_TW |
| dc.subject.keyword | Coefficient of Performance,Pump Efficiency,Irreversibility,Multiple Regression,Recurrent Neural Network, | en |
| dc.relation.page | 68 | |
| dc.identifier.doi | 10.6342/NTU201802304 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2018-08-07 | |
| dc.contributor.author-college | 工學院 | zh_TW |
| dc.contributor.author-dept | 機械工程學研究所 | zh_TW |
| 顯示於系所單位: | 機械工程學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-107-1.pdf 未授權公開取用 | 2.64 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
