Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 電機資訊學院
  3. 電機工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/70831
標題: 利用卷積神經網路實現WIFI定位系統
Convolution neural network on WIFI indoor localization
作者: Yao-Ren Chang
張耀仁
指導教授: 雷欽隆(Chin-Laung Lei)
關鍵字: 大數據,機器學習,卷積神經網路,Wifi定位,圖片特徵,
WIFI localization,machine learning,big data,convolution neural network,visual feature,
出版年 : 2018
學位: 碩士
摘要: 近年來行動支付系統越來越普及,我們享受到越來越多的便利,若能更精準的定位出消費著的所在位置,我們可以透過即時的推播廣告來提升商家的銷售業績,例如:當你走進餐廳時,手機自動彈出餐廳的優惠卷,走進服飾店時,系統自動推送您喜歡的衣服,在離開停車場時手機可以在您的允許下自動繳交停車費。
過往,WIFI定位系統是由RFID自動定位、三角定位,近年來由於機器學習的發展出現了各式各樣基於機器學習定位的模型。例如:DBSCAN、 Deep learning、KNN模型,在這篇論文中我們重建了WIFI信號的地理資訊,透過卷積神經網路來進行WIFI定位,並且利用特徵工程的技巧降低模型的訓練以及預測時間,最後在商店定位中取得了92.5%的準確度。
實驗中我們使用支付寶的實時支付所蒐集到的WIFI訊息以及使用者的消費記錄,透過特徵工程的方法模擬出WIFI的相對位置,最後使用卷積神經網路來進行訓練以及預測,在實驗中我們使用三種具代表性的機器學習模型來驗證卷積神經網路的效能: Lighgbm(multiple classifier), Lightgbm(binary Classifier), Keras Deep Neural network。實驗結果中,卷積神經網路與Lightgbm(binary classifier) 均獲得了90.8%以上的準確率,我們將他進行模型融合後可以獲得92.5%的準確度, 並在天池大數據競賽中取得第16名的成績。
The mobile payment has been growing very quickly in these year, our life has become more and more convenient. Once we can locate user’s position precisely, we can broadcast the advertisement to the user to increase sales performance. For example: when you walk into the restaurant, the system sent you the coupon of this restaurant immediately, when you walk into the apparel store, the system list all of the clothes you might like, when you are leaving parking lot, the system auto-debiting your parking fee.
In the past, WIFI localization system is based on RFID localization, triangle localization. Nowadays, with the growing of machine learning such as DBSCAN, Deep learning, KNN, we can localize user’s location more precisely.
In this paper, we use Alipay real-time payment dataset to do our experiment. We rebuild the geographic information from WIFI signal and train the model with convolution neural networks. Besides, we reduce the training/testing time on overhead by feature engineering. Then we evaluate the result with three most representative machine learning models: Lighgbm (multiple classifier), Lightgbm (binary Classifier), Keras (Deep Neural network). Finally, we evaluate the pros and cons for each machine learning model, and discuss the result.
URI: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/70831
DOI: 10.6342/NTU201802365
全文授權: 有償授權
顯示於系所單位:電機工程學系

文件中的檔案:
檔案 大小格式 
ntu-107-1.pdf
  目前未授權公開取用
4.37 MBAdobe PDF
顯示文件完整紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved