請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/70830完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 許正一(Zeng-Yei Hseu) | |
| dc.contributor.author | Chen-Chih Ching | en |
| dc.contributor.author | 陳芷晴 | zh_TW |
| dc.date.accessioned | 2021-06-17T04:40:08Z | - |
| dc.date.available | 2023-08-08 | |
| dc.date.copyright | 2018-08-08 | |
| dc.date.issued | 2018 | |
| dc.date.submitted | 2018-08-06 | |
| dc.identifier.citation | 陳肇夏。1998。臺灣的變質岩。臺灣地質系列第11號,經濟部中央地質調查所編印。144頁。
劉滄棽、郭鴻裕、朱戩、連深。2007。台灣東部蛇紋岩母質化育土壤地區重金屬特性之初探。臺灣農業研究。56:65-78。 Alexander, E. 2004. Serpentine soil redness, differences among peridotite and serpentinite materials, Klamath Mountains, California. Int Geol Rev. 46: 754-764. Becquer, T., C. Quantin, S. Rotte‐Capet, J. Ghanbaja, C. Mustin and A. Herbillon. 2006. Sources of trace metals in Ferralsols in New Caledonia. Eur J. Soil Sci. 57: 200-213. Becquer, T., C. Quantin, M. Sicot and J. Boudot. 2003. Chromium availability in ultramafic soils from New Caledonia. Sci. Total Environ. 301: 251-261. Blake, G. R., A. Klute, K. H. Hartge and A. Klute 1986. Bulk Density Methods of Soil Analysis: Part 1—Physical and Mineralogical Methods. Bosco, G. L. 2013. Development and application of portable, hand-held X-ray fluorescence spectrometers. TrAC-Trend Anal. Chem. 45: 121-134. Brady, N. C. and R. R. Weil. 2010. Elements of the nature and properties of soils, Pearson Educational International Upper Saddle River, NJ. Brent, R. N., H. Wines, J. Luther, N. Irving, J. Collins and B. L. Drake. 2017. Validation of handheld X-ray fluorescence for in situ measurement of mercury in soils. J. Environ. Chem. Eng. 5: 768-776. Brooks, R. R. 1987. Serpentine and its vegetation: a multidisciplinary approach. Dioscorides Press. Charlet, L. and A. A. Manceau. 1992. X-ray absorption spectroscopic study of the sorption of Cr (III) at the oxide-water interface: II. Adsorption, coprecipitation, and surface precipitation on hydrous ferric oxide. J. Colloid Interf. Sci. 148: 443-458. Corsi, J., A. L. Giudice, A. Re, A. Agostino and F. Barello. 2018. Potentialities of X-ray fluorescence analysis in numismatics: the case study of pre-Roman coins from Cisalpine Gaul. Archaeol. Anthrop. Sci. 10: 431-438. Dik, J., K. Janssens, G. Van Der Snickt, L. van der Loeff, K. Rickers and M. Cotte. 2008. Visualization of a lost painting by Vincent van Gogh using synchrotron radiation based X-ray fluorescence elemental mapping. Anal. Chem. 80: 6436-6442. Gardner, W. H. 1986. Water content. Methods of Soil Analysis: Part 1—Physical and Mineralogical Methods: 493-544. Gee, G. W. and J. W. Bauder. 1986. Particle-size analysis1. Methods of soil analysis: Part 1—Physical and mineralogical methods: 383-411. Gough, L. P., G. Meadows, L. L. Jackson and S. Dudka. 1989. Biogeochemistry of a highly serpentinized, chromite-rich ultramafic area, Tehama County, California, USGPO; For sale by the Books and Open-File Reports Section, US Geological Survey, Federal Center. Hall, G. E., G. F. Bonham-Carter and A. Buchar. 2014. Evaluation of portable X-ray fluorescence (pXRF) in exploration and mining: Phase 1, control reference materials. Geochem-Explor. Env. A. 14: 99-123. Hoffman, M. A. and D. Walker. 1978. Textural and chemical variations of olivine and chrome spinel in the East Dover ultramafic bodies, south-central Vermont. Geol. Soc. Am. Bull. 89: 699-710. Hseu, Z.-Y. 2006. Extractability and bioavailability of zinc over time in three tropical soils incubated with biosolids. Chemosphere 63: 762-771. Hu, W., B. Huang, D. C. Weindorf and Y. Chen. 2014. Metals analysis of agricultural soils via portable X-ray fluorescence spectrometry. Bull. Environ. Contam. Toxicol. 92: 420-426. Ilton, E., C. Moses and D. Veblen. 2000. Using X-ray photoelectron spectroscopy to discriminate among different sorption sites of micas: with implications for heterogeneous reduction of chromate at the mica-water interface. Geochim. Cosmochim. Ac. 64: 1437-1450. Ilton, E. S. and D. R. Veblen. 1994. Chromium sorption by phlogopite and biotite in acidic solutions at 25 C: Insights from X-ray photoelectron spectroscopy and electron microscopy. Geochim. Cosmochim. Ac. 58: 2777-2788. Kalnicky, D. J. and R. Singhvi. 2001. Field portable XRF analysis of environmental samples. J. Hazard. Mater. 83: 93-122. Kaupenjohann, M. and W. Wilcke. 1995. Heavy metal release from a serpentine soil using a pH-stat technique. Soil Sci. Soc. Am. J. 59: 1027-1031. Kenna, T. C., F. O. Nitsche, M. M. Herron, B. J. Mailloux, D. Peteet, S. Sritrairat, E. Sands and J. Baumgarten. 2011. Evaluation and calibration of a Field Portable X-Ray Fluorescence spectrometer for quantitative analysis of siliciclastic soils and sediments. J. Anal. At. Spectrom. 26: 395-405. Laiho, J. and P. Peramaki. 2005. Evaluation of portable X-ray fluorescence (PXRF) sample preparation methods. Special Paper-Geological Survey of Finland 38: 73. Malpas, J. 1992. Serpentine and the geology of serpentinized rocks. The Ecology of areas with serpentinized rocks. Springer: 7-30. Markowicz, A. A. 2008. Quantification and correction procedures. Portable X-ray Fluorescence Spectrometry: 13-38. McGrath, S. and P. Loveland. 1995. Heavy metals in soils. Blackie Academic and Professional, Glasgow, UK 152: 368. McKeague, J. and J. Day. 1966. Dithionite-and oxalate-extractable Fe and Al as aids in differentiating various classes of soils. Canadian J. soil Sci. 46: 13-22. McLean, E. 1982. Soil pH and lime requirement. Methods of soil analysis. Part 2. Chemical and microbiological properties: 199-224. Mehra, O. and M. Jackson. 1960. Iron oxide removal from soils and clays by a dithionite–citrate system buffered with sodium bicarbonate. Clays and clay minerals: proceedings of the Seventh National Conference, Elsevier. Mäkinen, E., M. Korhonen, E.-L. Viskari, S. Haapamäki, M. Järvinen and L. Lu. 2006. Comparison of XRF and FAAS methods in analysing CCA contaminated soils. Water Air Soil Poll. 171: 95-110. Neumann, P. M. and A. Chamel. 1986. Comparative phloem mobility of nickel in nonsenescent plants. Plant physiol. 81: 689-691. Oze, C., S. Fendorf, D. K. Bird and R. G. Coleman. 2004. Chromium geochemistry in serpentinized ultramafic rocks and serpentine soils from the Franciscan complex of California. Am. J. Sci. 304: 67-101. Page, A., R. Miller and D. Keeney. 1982. Methods of soil analysis. Part 2. Chemical and microbiological properties. American Society of Agronomy. Soil Sci. Soc. Am. Potts, P. J., M. H. Ramsey and J. Carlisle. 2002. Portable X-ray fluorescence in the characterisation of arsenic contamination associated with industrial buildings at a heritage arsenic works site near Redruth, Cornwall, UK. J. Environ. Monitor. 4: 1017-1024. Potts, P. J. and M. West 2008. Portable X-ray fluorescence spectrometry: Capabilities for in situ analysis. Royal Society of Chemistry. Potts, P. J., O. Williams‐Thorpe and P. C. Webb. 1997. The bulk analysis of silicate rocks by portable X‐ray fluorescence: effect of sample mineralogy in relation to the size of the excited volume. Geostand. Geoanal. Res. 21: 29-41. Quantin, C., T. Becquer, J. Rouiller and J. Berthelin. 2002. Redistribution of metals in a New Caledonia Ferralsol after microbial weathering. Soil Sci. Soc. Am. J. 66: 1797-1804. Rabenhorst, M., J. Foss and D. Fanning. 1982. Genesis of Maryland Soils Formed from Serpentinite 1. Soil Sci. Soc. Am. J. 46: 607-616. Radu, T. and D. Diamond. 2009. Comparison of soil pollution concentrations determined using AAS and portable XRF techniques. J. Hazard. Mater. 171: 1168-1171. Rouillon, M. and M. P. Taylor. 2016. Can field portable X-ray fluorescence (pXRF) produce high quality data for application in environmental contamination research? Environ. Pollut. 214: 255-264. Ryan, J. G., J. W. Shervais, Y. Li, M. K. Reagan, H. Y. Li, D. Heaton, M. Godard, M. Kirchenbaur, S. A. Whattam, J. A. Pearce, T. Chapman, W. Nelson, J. Prytulak, K. Shimizu and K. Petronotis. 2017. Application of a handheld X-ray fluorescence spectrometer for real-time, high-density quantitative analysis of drilled igneous rocks and sediments during IODP Expedition 352. Chem. Geol. 451: 55-66. Sack, R. O. and M. S. Ghiorso. 1991. Chromian spinels as petrogenetic indicators; thermodynamics and petrological applications. Am. Mineral. 76: 827-847. Sacristán, D., R. A. Viscarra Rossel and L. Recatalá. 2016. Proximal sensing of Cu in soil and lettuce using portable X-ray fluorescence spectrometry. Geoderma 265: 6-11. Shanker, A. K., C. Cervantes, H. Loza-Tavera and S. Avudainayagam. 2005. Chromium toxicity in plants. Environ. Int. 31: 739-753. Sharma, A., D. C. Weindorf, T. Man, A. A. A. Aldabaa and S. Chakraborty. 2014. Characterizing soils via portable X-ray fluorescence spectrometer: 3. Soil reaction (pH). Geoderma 232: 141-147. Sharma, A., D. C. Weindorf, D. D. Wang and S. Chakraborty. 2015. Characterizing soils via portable X-ray fluorescence spectrometer: 4. Cation exchange capacity (CEC). Geoderma 239: 130-134. Steiner, A. E., R. M. Conrey and J. A. Wolff. 2017. PXRF calibrations for volcanic rocks and the application of in-field analysis to the geosciences. Chem. Geol. 453: 35-54. Stosnach, H. 2006. On-site analysis of heavy metal contaminated areas by means of total reflection X-ray fluorescence analysis (TXRF). Spectrochimica Acta Part B: Atom. Spectrosc. 61: 1141-1145. Swanhart, S., D. C. Weindorf, S. Chakraborty, N. Bakr, Y. D. Zhu, C. Nelson, K. Shook and A. Acree. 2014. Soil Salinity Measurement Via Portable X-ray Fluorescence Spectrometry. Soil Sci. 179: 417-423. Tan, L. and H. Chuay. 1979. Serpentinites of the Fengtien-Wanyung area, Hualien, Taiwan. Acta Geologica Taiwan: 52-68. Weindorf, D. C., N. Bakr and Y. D. Zhu. 2014. Advances in Portable X-ray Fluorescence (PXRF) for Environmental, Pedological, and Agronomic Applications. Adv. Agron. 128: 1-45. Weindorf, D. C., Y. Zhu, B. Haggard, J. Lofton, S. Chakraborty, N. Bakr, W. Zhang, W. C. Weindorf and M. Legoria. 2012. Enhanced Pedon Horizonation Using Portable X-ray Fluorescence Spectrometry. Soil Sci. Soc. Am. J. 76: 522. Weindorf, D. C., Y. D. Zhu, R. Ferrell, N. Rolong, T. Barnett, B. L. Allen, J. Herrero and W. Hudnall. 2009. Evaluation of Portable X-ray Fluorescence for Gypsum Quantification in Soils. Soil Sci. 174: 556-562. Wildman, W., M. Jackson and L. Whittig. 1968. Iron-Rich Montmorillonite Formation in Soils Derived from Serpentinite 1. Soil Sci. Soc. Am. J. 32: 787-794. Yusuf, M., Q. Fariduddin, S. Hayat and A. Ahmad. 2011. Nickel: an overview of uptake, essentiality and toxicity in plants. Bull. Environ. Contam. Toxicol. 86: 1-17. Zhu, Y. D., D. C. Weindorf and W. T. Zhang. 2011. Characterizing soils using a portable X-ray fluorescence spectrometer: 1. Soil texture. Geoderma 167-68: 167-177. Zschornack, G. H. 2007. Handbook of X-ray Data. Springer Science & Business Media. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/70830 | - |
| dc.description.abstract | 蛇紋岩土壤具有高濃度的鎂、鉻與鎳濃度,且鈣鎂比值低,因此鈣、鎂、鉻與鎳可視為是蛇紋岩土壤的特徵元素。高濃度的鉻、鎳與特殊的鈣、鎂比例可能對農業生產與環境品質造成潛在風險,若可於現場立即得知是否為蛇紋岩土壤即可提高土壤管理與環境品質決策的效率。傳統實驗室分析以氫氟酸消化法消解樣品測定樣品元素濃度,實驗過程危險且繁瑣耗時,分析費用昂貴。攜帶式X射線螢光光譜儀 (Portable X-ray fluorescence spectrometry, pXRF) 為非破壞式分析,可快速並同時測定多種元素。藉由測定鈣、鎂、鉻與鎳含量,pXRF可作為現場快速判別蛇紋岩土壤的潛在工具。本研究以pXRF、氫氟酸消化法與王水消化法 (鉻與鎳) 測定蛇紋岩土壤化育層之特徵元素濃度以探討方法間差異,另以pXRF測定剖面中深度為每10公分一段之土壤,探討不同前處理對pXRF測定之影響,並了解不同採樣方式對於剖面元素分布之差異。三個蛇紋岩土壤剖面採自台東地區 (n = 21),每個剖面另採集深度為每10公分一段之土壤 (n = 38),分為風乾前、風乾後過10 mesh篩網與風乾後過100 mesh篩網等三種前處理方式,並以pXRF (Olympus Delta Premium 2000,以標準品NIST 2709、2710與2711於Geochem mode建立檢量線) 測定元素含量。結果顯示pXRF測定供試土壤中的特徵元素濃度和氫氟酸消化法之結果達顯著相關 (p < 0.01),和王水消化法測得的鉻與鎳濃度亦達極顯著相關 (p < 0.001)。輕元素 (鈣與矽) 的直線相關性相較於其它元素較不理想,可能受Auger effect與標準品土壤之母質影響;鎂與鉻則可能因基質干擾與光譜干擾導致直線迴歸方程式偏離y = x,其中鉻也可能受礦物結構與其它元素不同而影響測值,此外以pXRF測定時亦受樣品水分含量與均質程度影響。若以化育層土壤描繪剖面的元素分布,可利用pXRF測定化育層間元素濃度劇烈變化之處,協助描繪更接近實際剖面的元素分布。本研究證實pXRF對於蛇紋岩土壤的分析能力佳,可作為現場測定蛇紋岩土壤元素濃度的輔助參考工具。相較於其它母質土壤,臺灣的蛇紋岩土壤之鈣鎂比值相對低 (小於1.0),鉻、鎳含量極高且兩元素的相關性佳,於現場使用可快速鑑別為蛇紋岩土壤而非人為污染土壤,節省大量時間並符合經濟效益。 | zh_TW |
| dc.description.abstract | Serpentine soils are characterized by high Mg, Cr and Ni content and low Ca/Mg values. Hence, Ca, Mg, Cr and Ni are considered as the characteristic elements of serpentine soils. Excessive Cr and Ni and low Ca/Mg in serpentine soils may contribute to the potential risk of agricultural production and environmental quality. Identification of serpentine soils in the field rapidly is important for the efficiency of soil management and the environmental quality decision. Conventional measurement of these elements is determined in the laboratory after hydrogen fluoride (HF) digestion or aqua regia extraction. However, this technique is time-consuming, dangerous, and expensive. Portable X-ray fluorescence spectrometry (pXRF) can provide rapid screening and simultaneous multi-element determination for non-destructive analysis. Therefore, pXRF has the potential to rapid screening of serpentine soils by determining Cr, Ni, Ca and Mg in the field. The objectives of this study were to evaluate the analytical ability of pXRF by comparing HF digestion and aqua regia digestion (Cr and Ni) by determining horizon samples of serpentine soils, to evaluate the analytical abilities of pXRF for the screening of different pre-treatments of 10-cm interval samples from soil profiles (n = 38), and to understand the vertical distribution of Ca, Mg, Cr and Ni in the soil profiles by different sampling approaches. Three serpentine soil profiles were collected in Taitung (n = 21). In addition, 10-cm interval samples (n = 38) were divided into three parts of subsamples. They were fresh, sieved less than 10 mesh and sieved less than 100 mesh ones for quantifying by pXRF (An Olympus Delta Premium 2000 XRF analyzer was calibrated by NIST 2709,2710 and 2711 in Geochem mode). The experimental results indicated that the significant correlation (p < 0.01) between pXRF and HF digestion by determining characteristic elements. An excellent performance of Cr and Ni quantification between pXRF and aqua regia digestion with significant correlation (p < 0.001). However, light elements (Ca and Si) are not as relative expected linear relationships due to Auger effect and the parent material of standard reference materials. The linear regression of Mg and Cr deviated from y = x because of spectral interference and matrix interference. Besides, Cr may also be affected by the difference of mineral structure compare to other elements. Furthermore, water content and homogeneity of samples have an effect on quantifying elements by pXRF as well. pXRF can determine the elemental concentrations with dramatic variation between horizon samples, which can support to achieve the true distribution of elements in the soil profile by horizon samples.
This study verifies pXRF has excellent analytical ability to serpentine soils, which can be auxiliary equipment for quantifying elements in serpentine soils in the field. Comparing to other parent material soils, serpentine soils in Taiwan with low Ca/Mg (< 1.0), high Cr and Ni, and great correlation between Cr and Ni, which can rapidly identify serpentine soils rather than anthropogenic polluted soils by pXRF with saving considerable time and affording cost. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-17T04:40:08Z (GMT). No. of bitstreams: 1 ntu-107-R05623002-1.pdf: 6259105 bytes, checksum: 30fdc0489a01df0ebf4da495a9ebc9dc (MD5) Previous issue date: 2018 | en |
| dc.description.tableofcontents | 摘要 I
Abstract III 目錄 V 表目錄 VII 圖目錄 VIII 第一章 前言 1 第二章 文獻回顧 3 2.1 蛇紋岩 3 2.2 蛇紋岩土壤特性 3 2.3 蛇紋岩土壤中的鉻與鎳 4 2.4 手持式X射線螢光光譜儀 (portable X-ray fluorescence spectrometry, pXRF) 5 2.4.1 pXRF原理 7 第三章 材料與方法 10 3.1 蛇紋岩土壤樣體之樣品採集與製備 10 3.2 微形態觀察之樣品採集 15 3.3 土壤理化性質分析 15 3.4 土壤薄切片製備與觀察 22 3.5 手持式X射線螢光光譜儀 (pXRF) 22 3.5 品質保證與品質控制 (QA/QC) 26 3.6 統計分析 26 第四章 結果與討論 27 4.1 土壤基本性質 27 4.2 土壤樣體之微形態特徵 37 4.3 樣品查核分析 41 4.4 土壤樣體之重金屬全量 41 4.4.1 以氫氟酸消化法測定土壤樣體元素濃度 41 4.4.2 以pXRF測定土壤樣體元素濃度 49 4.4.2.1 pXRF與氫氟酸消化法所測得之元素濃度直線迴歸分析 60 4.4.2.2 標準品之取代—利用現地樣品校正之pXRF與氫氟酸消化法測定元素濃度之直線迴歸分析 68 4.4.3 以王水消化法測定土壤樣體中鉻與鎳濃度 69 4.4.3.1 pXRF與王水消化法所測得之鉻與鎳濃度直線迴歸分析 73 4.5 前處理對pXRF測定之影響 73 4.6 不同取樣深度方式對元素垂直分布的比較 82 第五章 結論 90 第六章 參考文獻 92 第七章 附錄 97 | |
| dc.language.iso | zh-TW | |
| dc.subject | 攜帶式X射線螢光光譜儀 | zh_TW |
| dc.subject | 鎳 | zh_TW |
| dc.subject | 氫氟酸消化法 | zh_TW |
| dc.subject | 鉻 | zh_TW |
| dc.subject | 蛇紋岩土壤 | zh_TW |
| dc.subject | HF digestion | en |
| dc.subject | serpentine soils | en |
| dc.subject | portable X-ray fluorescence spectrometry | en |
| dc.subject | pXRF | en |
| dc.subject | chromium | en |
| dc.subject | nickel | en |
| dc.title | 以攜帶式X射線螢光光譜儀測定蛇紋岩土壤特徵元素之可行性 | zh_TW |
| dc.title | The feasibility of X-ray fluorescence spectrometry for measuring characteristic elements of serpentine soils | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 106-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 陳尊賢(Zueng-Sang Chen),王尚禮(Shan-Li Wang),莊愷瑋(Kai-Wei Juang),鄒裕民(Yu-Min Tzou) | |
| dc.subject.keyword | 蛇紋岩土壤,攜帶式X射線螢光光譜儀,氫氟酸消化法,鉻,鎳, | zh_TW |
| dc.subject.keyword | serpentine soils,portable X-ray fluorescence spectrometry,pXRF,HF digestion,chromium,nickel, | en |
| dc.relation.page | 103 | |
| dc.identifier.doi | 10.6342/NTU201802588 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2018-08-07 | |
| dc.contributor.author-college | 生物資源暨農學院 | zh_TW |
| dc.contributor.author-dept | 農業化學研究所 | zh_TW |
| 顯示於系所單位: | 農業化學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-107-1.pdf 未授權公開取用 | 6.11 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
