請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/70805完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 鄭士康(Shyh-Kang Jeng) | |
| dc.contributor.author | Jiun-Hao Jhan | en |
| dc.contributor.author | 詹鈞皓 | zh_TW |
| dc.date.accessioned | 2021-06-17T04:39:10Z | - |
| dc.date.available | 2020-09-03 | |
| dc.date.copyright | 2020-09-03 | |
| dc.date.issued | 2020 | |
| dc.date.submitted | 2020-08-21 | |
| dc.identifier.citation | [1] Snyder, C. R., Shane J. Lopez, and Jennifer T. Pedrotti. Positive Psychology: The Scientific and Practical Explorations of Human Strengths. Second ed. Los Angeles: SAGE, 2011. 267–75. Print.
[2] Luka Bradeško, Dunja Mladenić. A Survey of Chabot Systems through a Loebner Prize Competition. 2012 [3] Joseph Weizenbaum. ELIZA—a computer program for the study of natural language communication between man and machine. Communications of the ACM. Jan1966, Vol. 9 Issue 1, p36-45. 10p. [4] Kenneth Mark Colby, Sylvia Weber, Franklin Dennis Hilf. Artificial Paranoia. ScienceDirect. 1971 [5] AbuShawar, Bayan; Atwell, Eric. ALICE Chatbot: Trials and Outputs. Computación y sistemas. , 2015, Vol.19(4), p.625 [6] BNC (2002). British National Corpus. 2002 [7] Bayan Abu Shawar. A Chatbot as a Natural Web Interface to Arabic Web QA. iJET Volume 6, Number 1, Mar 18, 2011 ISSN 1863-0383 Publisher: International Association of Online Engineering, Kassel, Germany [8] Richard S. Wallace. The Elements of AIML Style. ALICE A. I. Foundation, Inc. 2003 [9] Zongcheng Ji, Zhengdong Lu, Hang Li. An information retrieval approach to short text conversation. 2014. arXiv preprint arXiv:1408.6988. [10] Mingxuan Wang, Zhengdong Lu, Hang Li, and Qun Liu. Syntax-Based Deep Matching of Short Texts. 2015. AAAI Publications, Twenty-Fourth International Joint Conference on Artificial Intelligence [11] Rui Yan, Yiping Song, and Hua Wu. Learning to Respond with Deep Neural Networks for Retrieval-Based Human-Computer Conversation System. 2016. SIGIR '16: Proceedings of the 39th International ACM SIGIR conference on Research and Development in Information Retrieval. July 2016. Pages 55–64 [12] an, Yiping Song, and Hua Wu. Learning to Respond with Deep Neural Networks for Retrieval-Based Human-Computer Conversation System. SIGIR '16: Proceedings of the 39th International ACM SIGIR conference on Research and Development in Information Retrieval. July 2016. Pages 55–64 [13] Xiangyang Zhou, Daxiang Dong, Hua Wu, Shiqi Zhao, R Yan, D Yu, Xuan Liu, and H Tian. 2016. Multiview response selection for human-computer conversation. EMNLP16. [14] Yu Wu, Wei Wu, Chen Xing, Can Xu, Zhoujun Li, Ming Zhou. Sequential Matching Network: A New Architecture for Multi-turn Response Selection in Retrieval-based Chatbots. 2019. Computational Linguistics, Volume 45, Issue 1 - March 2019 [15] Lifeng Shang, Zhengdong Lu, Hang Li. Neural Responding Machine for Short-Text Conversation. 2015. Association for Computational Linguistics. [16] Yinfei Yang, Steve Yuan, Daniel Cer, Sheng-yi Kong, Noah Constant, Petr Pilar, Heming Ge, Yun-Hsuan Sung, Brian Strope, Ray Kurzweil. Learning Semantic Textual Similarity from Conversations. 2018. arXiv preprint arXiv:1804.07754 [17] Ashish Vaswani,Noam Shazeer,Niki Parmar,Jakob Uszkoreit,Llion Jones,Aidan N. Gomez,Łukasz Kaiser,Illia Polosukhin. Attention Is All You Need. 2017. Neural Information Processing Systems Conference. [18] Jacob Devlin, Ming-Wei Chang, Kenton Lee, Kristina Toutanova. BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding. 2018. NAACL2019. [19] Matthew Henderson, Rami Al-Rfou, Brian Strope, Yun-hsuan Sung, Laszlo Lukacs, Ruiqi Guo, Sanjiv Kumar, Balint Miklos, Ray Kurzweil. Efficient Natural Language Response Suggestion for Smart Reply. 2017. arXiv preprint arXiv:1705.00652 [20] Alan Ritter, Colin Cherry, William B. Dolan. Data-Driven Response Generation in Social Media. 2011. Proceedings of the conference on empirical methods in natural language processing, 583–593. Association for Computational Linguistics. [21] Dario Amodei, Rishita Anubhai, Eric Battenberg, Carl Case, Jared Casper, Bryan Catanzaro, Jingdong Chen, Mike Chrzanowski, Adam Coates, Greg Diamos, Erich Elsen, et al. Deep Speech 2: End-to-End Speech Recognition in English and Mandarin. 2015. arXiv preprint arXiv:1512.02595, 2015. [22] Iulian V. Serban, Alessandro Sordoni, Yoshua Bengio, Aaron Courville, Joelle Pineau. Building End-To-End Dialogue Systems Using Generative Hierarchical Neural Network Models. In Proceedings of the Thirtieth AAAI Conference on Artificial Intelligence, February 12-17, 2016, Phoenix, Arizona, USA., 3776–3784. [23] Lifeng Shang, Zhengdong Lu, Hang Li. Neural responding machine for short-text conversation. 2015. 1577–1586. The Association for Computer Linguistics [24] Aniruddha Tammewar, Monik Pamecha, Chirag Jain, Apurva Nagvenkar, Krupal Modi. Production Ready Chatbots: Generate if Not Retrieve. 2018. AAAI Publications, Workshops at the Thirty-Second AAAI Conference on Artificial Intelligence [25] Alec Radford, Karthik Narasimhan, Tim Salimans, and Ilya Sutskever. Improving language understanding by generative pre-training. 2018. [26] Alec Radford, Jeffrey Wu, Rewon Child, David Luan, Dario Amodei, and Ilya Sutskever. Language models are unsupervised multitask learners. 2019. OpenAI Blog, 1(8). [27] Zhaojiang Lin, Peng Xu, Genta Indra Winata, Farhad Bin Siddique, Zihan Liu, Jamin Shin, Pascale Fung. CAiRE: An End-to-End Empathetic Chatbot. 2019. arXiv preprint arXiv: 1907.12108 [28] Xiao Sun ; Xinmiao Chen ; Zhengmeng Pei ; Fuji Ren. Emotional Human Machine Conversation Generation Based on SeqGAN. 2018. First Asian Conference on Affective Computing and Intelligent Interaction (ACII Asia). [29] Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley, Sherjil Ozair, Aaron Courville, Yoshua Bengio. Generative Adversarial Nets. 2014. Advances in Neural Information Processing Systems 27 (NIPS 2014). [30] Peter Salovey, John D. Mayer. Emotional Intelligence. 1990. Imagination cognition and personality, vol. 9, no. 3, pp. 185-211. [31] Sayan Ghosh, Mathieu Chollet, Eugene Laksana, Louis-Philippe Morency, Stefan Scherer. Affect-LM: A Neural Language Model for Customizable Affective Text Generation. 2017. Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), Association for Computational Linguistics. [32] Sepp Hochreiter, Jürgen Schmidhuber. Long Short-Term Memory. Neural Computation,Volume 9, Issue 8, November 15, 1997, p.1735-1780. [33] Hao Zhou, Minlie Huang, Tianyang Zhang, Xiaoyan Zhu, Bing Liu. Emotional Chatting Machine: Emotional Conversation Generation with Internal and External Memory. 2018. Thirty-Second AAAI Conference on Artificial Intelligence. [34] Jonas Mueller, David Gifford, Tommi Jaakkola. Sequence to Better Sequence: Continuous Revision of Combinatorial Structures. 2017. Proceedings of the 34th International Conference on Machine Learning, PMLR 70:2536-2544. [35] Chih-Wei Lee, Yau-Shian Wang, Tsung-Yuan Hsu, Kuan-Yu Chen, Hung-Yi Lee, Lin-shan Lee. Scalable Sentiment for Sequence-to-sequence Chatbot Response with Performance Analysis. 2018. arXiv preprint arXiv:1804.02504 [36] Hannah Rashkin, Eric Michael Smith, Margaret Li, Y-Lan Boureau. Towards Empathetic Open-domain Conversation Models: A New Benchmark and Dataset. 2019. Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. ACL [37] Yanran Li, Hui Su, Xiaoyu Shen, Wenjie Li, Ziqiang Cao, Shuzi Niu. Dailydialog: A manually labelled multi-turn dialogue dataset. 2017. In Proceedings of the Eighth International Joint Conference on Natural Language Processing (Volume 1: Long Papers), volume 1, pages 986–995. [38] Thomas Wolf, Victor Sanh, Julien Chaumond, Clement Delangue. TransferTransfo: A Transfer Learning Approach for Neural Network Based Conversational Agents. 2018. NeurIPS 2018 CAI Workshop. [39] Alexander Miller, Will Feng, Dhruv Batra, Antoine Bordes, Adam Fisch, Jiasen Lu, Devi Parikh, and Jason Weston. Parlai: A dialog research software platform. 2017. In Proceedings of the 2017 Conference on Empirical Methods in Natural Language Processing: System Demonstrations, pages 79–84. [40] Klaus R. Scherer and Harald G. Wallbott. Evidence for universality and cultural variation of differential emotion response patterning. 1994. Journal of personality and social psychology, 66 2:310–28. [41] Carlo Strapparava and Rada Mihalcea. Semeval2007 task 14: Affective text. 2007. In SemEval@ACL. [42] Amy Skerry and Rebecca Saxe. Neural representations of emotion are organized around abstract event features. 2015. Current Biology, 25:1945–1954. [43] Saif M. Mohammad. #emotional tweets. 2012. In Proceedings of the First Joint Conference on Lexical and Computational Semantics - Volume 1: Proceedings of the Main Conference and the Shared Task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation, SemEval ’12, pages 246–255, Stroudsburg, PA, USA. Association for Computational Linguistics. [44] ado van Hasselt, Arthur Guez, David Silver. Deep Reinforcement Learning with Double Q-Learning. 2016. AAAI Publications, Thirtieth AAAI Conference on Artificial Intelligence. [45] Kishore Papineni, Salim Roukos, Todd Ward, and WeiJing Zhu. Bleu: a method for automatic evaluation of machine translation. 2002. In Proceedings of the 40th annual meeting on association for computational linguistics, pages 311–318. Association for Computational Linguistics. [46] Coke, J. S., Batson, C. D., McDavis, K. Empathic mediation of helping: A two-stage model. 1978. Journal of Personality and Social Psychology, 36(7), 752–766. [47] Levenson R.W., Rueff, A.M., Empathy: A physiological substrate. 1992. Journal of Personality and Social Psychology, 63, 234–346. [48] Ickes W., Stinson L., Bissonnette, V., Garcia, S., Naturalistic social cognition: Empathic accuracy in mixed-sex dyads. 1990. Journal of Personality and Social Psychology, 59, 730–742. [49] Davis, M.H., Conklin, L., Smith, A., Luce, C., Effect of perspective taking on the cognitive representations of persons: A merging of self and other. 1996. Journal of Personality and Social Psychology, 70, 713–726. [50] Sara D. Hodges, Kristi J.K. Klein. Regulating the costs of empathy: The price of being human. 2001. Journal of Socio-Economics 30 (2001) 437–452 [51] G. H. M. Pijnenborg, J. M. Spikman, B. F. Jeronimus A. Aleman. Insight in schizophrenia: associations with empathy. 2012. European Archives of Psychiatry and Clinical Neuroscience. [52] Kimberley Rogers, Isabel Dziobek, Jason Hassenstab, Oliver T. Wolf, Antonio Convit. Who cares? Revisiting empathy in Asperger syndrome. 2007. Journal of Autism and Developmental Disorders volume 37, pages709–715(2007) [53] Frans B.M. de Waal. Putting the Altruism Back into Altruism: The Evolution of Empathy. 2008. Annual Review of Psychology Vol. 59:279-300 [54] Matthew Peters, Mark Neumann, Mohit Iyyer, Matt Gardner, Christopher Clark, Kenton Lee, and Luke Zettlemoyer. Deep contextualized word representations. 2018. In Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long Papers), pages 2227–2237. [55] Junyoung Chung, Çaglar Gülçehre, Kyunghyun Cho, and Yoshua Bengio. Empirical evaluation of gated recurrent neural networks on sequence modeling. 2014. CoRR, abs/1412.3555, 2014. [56] Richard S. Sutton and Andrew G. Barto. Reinforcement Learning: An Introduction. 2017. A Bradford Book, The MIT Press, Cambridge, Massachusetts, London, England. [57] Richard S Sutton, David A McAllester, Satinder P Singh, and Yishay Mansour. Policy gradient methods for reinforcement learning with function approximation. 2000. Advances in neural information processing systems, pp. 1057–1063. [58] John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, Oleg Klimov. Proximal Policy Optimization Algorithms. 2017. arXiv preprint arXiv:1707.06347v2 [59] Volodymyr Mnih, Adrià Puigdomènech Badia, Mehdi Mirza, Alex Graves, Tim Harley, Timothy P. Lillicrap, David Silver, Koray Kavukcuoglu. Asynchronous Methods for Deep Reinforcement Learning. 2016. arXiv preprint arXiv:1602.01783v2 [60] Saizheng Zhang, Emily Dinan, Jack Urbanek, Arthur Szlam, Douwe Kiela, and Jason Weston. Personalizing dialogue agents: I have a dog, do you have pets too? 2018b. In Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pages 2204– 2213. Association for Computational Linguistics. [61] Chao-Peng Liu 2020. Empathetic Generative-based Chatbot with Emotion Understanding via Reinforcement Learning, Master Thesis, Department of Electrical Engineering, National Taiwan University. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/70805 | - |
| dc.description.abstract | 聊天機器人是一支透過語音或文本訊息來與使用者進行對話的程式。在建立聊天機器人的程序中,對話的連貫性至關重要,而回覆的文法句構也必須重視。但是,隨著對話機器人技術日漸成熟,人們與聊天機器人對話時,越來越重視個人的情緒與感受;他們希望聊天機器人能夠了解使用者心中潛在的感受,期望聊天機器人能更關心他們或是具有同情心。因此,使用者若是收到帶有同情心的回覆,他們會有更好更完全的聊天體驗。舉例來說,以一個學生未通過考試的陳述當作對話開頭,學生說:「我搞砸了我昨天的考試。」在此情況下,「又來?你應該通過考試的。」和「別擔心,你下次會通過考試的。」都是合理且通順的回覆。然而,很明顯地,第一句回覆像是譴責使用者考試的表現,會使使用者的情緒更為低落;而第二句回覆卻像是安慰使用者,所以第二句回覆對於使用者心境來說,較為恰當。本文所提出的系統架構為檢索式聊天機器人。為使對話內容順暢且連貫,我們在訓練模型中運用 BERT 等預訓模型,提升機器人的文字理解能力。為使聊天機器人產生之回覆帶有同情心,我們使用強化式學習,預測回覆必須具備何種情緒,以最大化同情心分數的正向變化值。實驗結果表明,我們提出之檢索式聊天機器人,效能上皆勝過過去其他學者提出的基準模型。由實驗結果之對話紀錄顯示,本文發想之對話機器人,可以在與使用者的聊天過程中,產生順暢,符合邏輯,具有同情心的會話。 | zh_TW |
| dc.description.abstract | A chatbot is a program to conduct a conversation via auditory or textual information. Although the coherence of response plays an important role in chatting with a chatbot, people might place more emphasis on their feeling during interacting with chatbots, which includes but not only caring for people or. By considering the feelings of others, people can have a better interactive and supportive experience. For instance, given “I failed the exam yesterday” as the speaker’s opening sentence, both “Again? You should pass it!” and “Don’t worry. You will pass the exam next time” are relevant and acceptable responses. Considering the emotional state, however, the latter response would make the speaker feel better, whereas the former response seems to blame the speaker, making the speaker feel worse than before. In this study, we present several empathetic chatbots that understand any implied feelings of users and reply to them by arousing empathy. These chatbots are based on the retrieval-based architecture, and were in addition finetuned by deep reinforcement learning. To generate a response with fluency and coherence, the chatbot is trained with the contextualized embedding, such as BERT and. To acquire the capability of replying in an empathetic way, the chatbot takes the current emotional state and the next emotional state into account. Thus, experiment results demonstrate that our chabot outperform the baseline chatbots in objective metrics and subjective ratings. According to examples of conversation between those generated by our model and by real human users, we believe that our chatbots are able to chat with users in real-time, fluently, coherently, and empathetically. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-17T04:39:10Z (GMT). No. of bitstreams: 1 U0001-2008202015162000.pdf: 3635180 bytes, checksum: 763728212167bc1c1c3080ebe3b764bf (MD5) Previous issue date: 2020 | en |
| dc.description.tableofcontents | 誌謝 ii 中文摘要 iii Abstract iv Contents v LIST OF FIGURES vii LIST OF TABLE viii Chapter 1 Introduction 1 1.1 Motivation 1 1.2 Problem Statement 2 1.3 Literature Survey 3 1.3.1 Overview of Chatbot 3 1.3.2 Ruled-based Chatbot 4 1.3.3 Retrieval-based Chatbot 7 1.3.4 Generative-based Chatbot 8 1.3.5 Emotional and Sentimental Chatbot 9 1.3.6 Empathetic Chatbot 11 1.4 Contributions 12 1.5 Chapter Outline 13 Chapter 2 Background Knowledge 13 2.1 Empathy 13 2.2 Contextualized Embedding 14 2.2.1 Transformer 15 2.2.2 BERT 16 2.3 Deep Reinforcement Learning 18 Chapter 3 System Design 20 3.1 Dataset 20 3.1.1 Reddit Dataset 20 3.1.2 DailyDialog Dataset 21 3.1.3 EmpatheticDialogues Dataset 22 3.2 System Overview 24 3.3 Emotion Controller 26 3.4 Dialogue Manager 27 3.4.1 Retrieval-based Chatbot 28 3.5 Fixed Chatbot Agent 29 3.6 Empathy Amplifier 29 Chapter 4 Experiment Setup 32 4.1 Experimental Models Setup 32 4.2 Objective Test 33 4.3 Subjective Test 34 Chapter 5 Results and Discussion 36 5.1 Objective Test Results 36 5.2 Emotion Filter in Retrieval-based Chatbot 37 5.3 Deep Reinforcement Learning Results 39 5.4 Human Evaluation Results 41 5.5 Examples of Model Responses 43 Chapter 6 Conclusion 45 Reference 46 | |
| dc.language.iso | en | |
| dc.subject | 聊天機器人 | zh_TW |
| dc.subject | 同情心 | zh_TW |
| dc.subject | 自然語言處理 | zh_TW |
| dc.subject | 文本情境嵌入 | zh_TW |
| dc.subject | 深度強化式學習 | zh_TW |
| dc.subject | Natural Language Processing | en |
| dc.subject | Contextualized embedding | en |
| dc.subject | Chatbot | en |
| dc.subject | Empathy | en |
| dc.subject | Deep reinforcement learning | en |
| dc.title | 基於深度強化式學習之富同情心的檢索式聊天機器人 | zh_TW |
| dc.title | Empathetic and Retrieval-based Chatbot using Deep Reinforcement Learning | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 108-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 陳信希(HSIN-HSI CHEN),李宏毅(Hung-yi Lee),鄭卜壬(Pu-Jen Cheng) | |
| dc.subject.keyword | 聊天機器人,同情心,自然語言處理,文本情境嵌入,深度強化式學習, | zh_TW |
| dc.subject.keyword | Chatbot,Empathy,Natural Language Processing,Contextualized embedding,Deep reinforcement learning, | en |
| dc.relation.page | 52 | |
| dc.identifier.doi | 10.6342/NTU202004139 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2020-08-21 | |
| dc.contributor.author-college | 電機資訊學院 | zh_TW |
| dc.contributor.author-dept | 電信工程學研究所 | zh_TW |
| 顯示於系所單位: | 電信工程學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| U0001-2008202015162000.pdf 未授權公開取用 | 3.55 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
