Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 理學院
  3. 化學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/70799
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor徐丞志(Cheng-Chih Hsu)
dc.contributor.authorChih-Lin Chenen
dc.contributor.author陳致霖zh_TW
dc.date.accessioned2021-06-17T04:38:56Z-
dc.date.available2021-08-13
dc.date.copyright2018-08-13
dc.date.issued2018
dc.date.submitted2018-08-07
dc.identifier.citation1. Frontiers in Microbiology(www.frontiersin.org) Singhal et al. 2015 6
2. Anal. Chem. 2017, 90, 9, 5654-5663
3. Reyzer, M. L. et al. Direct Molecular Analysis of Whole-Body Animal Tissue Sections by MALDI Imaging Mass Spectrometry. Methods. Mol. Biol. 656, 285-301 (2010)
4. Trim, P. J. et al. Matrix-Assisted Laser Desorption/Ionization-Ion Mobility Seperation-Mass Spectrometry Imaging of Vinblastine in Whole Body Tissue Sections. Anal. Chem. 80, 8628-8634 (2008)
5. Hankin, J. A., Barkley, R. M., & Murphy, R. C. Sublimation as a method of matrix application for mass spectrometric imaging. Journal of the American Society for Mass Spectrometry, 18(9), 1646-1652 (2007).
6. Yang, J., & Caprioli, R. M. Matrix sublimation/recrystallization for imaging proteins by mass spectrometry at high spatial resolution. Analytical chemistry, 83(14), 5728-5734 (2011).
7. Sebastiaan, V. N. et al. Insights into the MALDI process after matrix deposition by sublimation using 3D SIMS imaging. Anal. Chem. 90 1907-1914 (2018).
8. Wiseman, J. M. et al. Desorption electrospray ionization mass spectrometry: Imaging drugs and metabolites in tissue. PNAS. 105, 18120-18125 (2008)
9. Hsu, CC., Dorrestein, PC (2015). Visualizing Life With Ambient Mass Spectrometry. Curr. Opin. Biotechnol. 31, 24-34.
10. Hsu, CC; Chou, PT; Zare RN, Imaging of Proteins in Tissue Samples Using Nanospray Desorption Electrospray Ionization Mass Spectrometry. Anal. Chem. 87(22), 11171-11175 (2015).
11. P. J. Roach et. al. Nanospray desorption electrospray ionization: An ambient method for liquid-extraction surface sampling in mass spectrometry. Analyst, 135, 2233–2236 (2010).
12. M. Manikandan et. al. Biological Desorption Electrospray Ionization Mass Spectrometry (DESI MS)—Unequivocal role of crucial ionization factors, solvent system and substrates. Trends Analyt. Chem. 78, 109–119 (2016)
13. C. Wu et. al. Rapid, direct analysis of cholesterol by charge labeling in reactive desorption electrospray ionization. Anal. Chem. 81, 7618–7624 (2009).
14. K. Heaton et. al.. Towards the application of desorption electrospray ionisation mass spectrometry (DESI-MS) to the analysis of ancient proteins from artefacts. J. Archaeol. Sci. 36, 2145–2154 (2009).
15. D. J. Weston. Ambient ionization mass spectrometry: Current understanding of mechanistic theory; Analytical performance and application areas. Analyst, 135, 661–668 (2010).
16. Kertesz, V. and Berkel, G. J. V. Improved imaging resolution in desorption electrospray ionization mass spectrometry. Rapid Commun. Mass Spectrom. 22, 2639-2644 (2008)
17. J. Laskin et. al. Tissue imaging using nanospray desorption electrospray ionization mass spectrometry. Anal. Chem. 84, 141–148 (2012).
18. G. J. Van Berkel et. al. Liquid microjunction surface sampling probe electrospray mass spectrometry for detection of drugs and metabolites in thin tissue sections. J. Mass Spectrom. 43, 500–508 (2008).
19. W. Rao et. al. High resolution tissue imaging using the single-probe mass spectrometry under ambient conditions. J. Am. Soc. Mass Spectrom. 26, 986–993 (2015).
20. Prentice, B. M., & Caprioli, R. M. (2016). The need for speed in matrix-assisted laser desorption/ionization imaging mass spectrometry. Postdoc journal: a journal of postdoctoral research and postdoctoral affairs, 4(3), 3.
21. Lin, L. E., Su, P. R., Wu, H. Y., & Hsu, C. C. (2018). A Simple Sonication Improves Protein Signal in Matrix-Assisted Laser Desorption Ionization Imaging. Journal of the American Society for Mass Spectrometry, 1-4.
22. V. V. Laiko et. al. Atmospheric Pressure MALDI/Ion Trap Mass Spectrometry. Anal. Chem. 72, 5239-5243 (2000).
23. B. B. Schneider et. al. AP and vacuum MALDI on a QqLIT instrument. J. Am. Soc. Mass Spectrom. 16, 176-182 (2005).
24. D. R. Ifa et al. Ambient ionization mass spectrometry for cancer diagnosis and surgical margin evaluation. Clinical Chemistry, 62, 111-123 (2016).
25. Sans, M et al. Advances in mass spectrometry imaging coupled to ion mobility spectrometry for enhanced imaging of biological tissues. Current Opinion in Chemical Biology, 42, 138 (2018).
26. Zhang, J.; et al. (2016) Cardiolipins are biomarkers of mitochondria-rich thyroid oncocytic tumors. Cancer Res. 76, 6588.
27. J. M. Wiseman et al. Tissue imaging at atmospheric pressure using desorption electrospray ionization (DESI) mass spectrometry. Angew. Chem. Int. Ed. 45, 7188-7192 (2006).
28. Takats, Z et al. Mass spectrometry sampling under ambient conditions with desorption electrospray ionization. Science, 306, 471-473 (2004).
29. R. G. Cooks et al. Ambient mass spectrometry. Science, 311, 1566 (2006).
30. C. C. Hsu et al. Real-time metabolomics on living microorganisms using ambient electrospray ionization flow-probe. Anal. Chem. 85, 7014 (2013).
31. S. N. Nguyen et. al. Constant-Distance Mode Nanospray Desorption Electrospray Ionization Mass Spectrometry Imaging of Biological Samples with Complex Topography. Anal. Chem. 89, 1131-1137 (2016).
32. S. N. Nguyen et. al. Towards High-Resolution Tissue Imaging Using Nanospray Desorption Electrospray Ionization Mass Spectrometry Coupled to Shear Force Microscopy. J. Am. Soc. Mass Spectrom. 29, 316-322 (2018).
33. Z. Zhou et. al. Personal Information from Latent Fingerprints Using Desorption Electrospray Ionization Mass Spectrometry and Machine Learning. Anal. Chem. 89, 1369-1372 (2017).
34. S. O. Ovchinnikova et al. Atomic Force Microscopy Controlled Topographical Imaging and Proximal Probe Thermal Desorption/Ionization Mass Spectrometry Imaging. Anal. Chem. 86, 1083-1090 (2014)
35. R. V. Bennet et al. Imaging of Biological Tissues by Desorption Electrospray Ionization Mass Spectrometry. J. Vis. Exp. 77, 1-8 (2013).
36. Kim, J. Y. et al. Atmospheric pressure mass spectrometric imaging of live hippocampal tissue slices with subcellular spatial resolution. Nat. Commun. 8, 1-13 (2017)
37. Pohl, C. and Van Genderen, J. L. Review article Multisensor image fusion in remote sensing: Concepts, methods and applications. INT. J. REMOTE SENSING. 19, 823-854 (1998)
38. Xydeas, C. S. and Petrović, V. Objective image fusion performance measure. Electron. Lett. 36, 308-309 (2000)
39. Li, H. et al. Multisensor Image Fusion Using the Wavelet Transform. GMIP. 57, 235-245 (1995)
40. Vollnhals, F. et al. Correlative Microscopy Combining Secondary Ion Mass Spectrometryand Electron Microscopy: Comparison of Intensity-Hue-Saturation and Laplacian Pyramid Methods for Image Fusion. Anal. Chem. 89, 10702-10710 (2017)
41. Plas, R. V. et al. Image fusion of mass spectrometry and microscopy: a multimodality paradigm for molecular tissue mapping. Nat. Methods. 12, 366-374 (2015) Robichaud, G.; Garrard, KP; Barry, JA; Muddiman, DC. MSiReader: An Open-Source Interface to View and Analyze High Resolving Power MS Imaging Files on Matlab Platform, J. Am. Soc. Mass Spectrom, 2013, 24(5), 718-721. DOI: 10.1007/s13361-013-0607-z
42. Bokhart, M.; Nazari, M.; Garrard, K.; Muddiman, D. MSiReader v1.0: Evolving Open-Source Mass Spectrometry Imaging Software for Targeted and Untargeted
43. Nemes, P; Vertes A. (2007) Laser ablation electrospray ionization for atmospheric pressure, in vivo, and imaging mass spectrometry. Anal. Chem. 79, 8098-8106.
44. Shelley, JT; Ray SJ; Hieftje GM. (2008) Laser Ablation Coupled to a Flowing Atmospheric Pressure Afterglow for Ambient Mass Spectral Imaging. Anal. Chem. 80, 8308.
45. Alexander Makarov, Eduard Denisov, Oliver Lange, and Stevan Horning, J Am Soc Mass Spectrom, 2006, 17, 977–982.
46. Lau Sennels, Mogjiborahman Salek, Lee Lomas, Egisto Boschetti, Pier Giorgio Righetti, and Juri Rappsilber, Journal of Proteome Research, 2007, 6, 4055-4062.
47. Krikor Bijian, Alex M. Mlynarek, Richard L. Balys, Su Jie, Yingjie Xu, Michael P. Hier, Martin J. Black, Marcos R. Di Falco, Sylvie LaBoissiere, and Moulay A. Alaoui-Jamali, Journal of Proteome Research, 2009, 8, 2173-2185.
48. Rembert Pieper, Christine L. Gatlin, Anthony J. Makusky, Paul S. Russo, Courtney R. Schatz, Stanton S. Miller, Qin Su, Andrew M. McGrath, Marla A. Estock, Prashanth P. Parmar, Ming Zhao, Shih-Ting Huang, Jeff Zhou, Fang Wang, Ricardo Esquer-Blasco, N. Leigh Anderson, John Taylor, and Sandra Steiner, Proteomics, 2003, 3, 1345-1364.
49. Anastasia K. Yocum, Kenneth Yu, Tomoyuki Oe, and Ian A Blair, Journal of Proteome Research, 2005, 4, 1722-1731.
50. Singhal, N. et al. MALDI-TOF mass spectrometry: an emerging technology for microbial identification and diagnosis. Front. Microbial. 6, 1-16 (2015)
51. Nuffel, S. V. et al. Insights into the MALDI Process after Matrix Deposition by Sublimation Using 3D ToF-SIMS Imaging. Anal. Chem. 90, 1907-1914 (2018)
52. R. Cumeras, E. Figueras, C. E. Davis, J. I. Baumbach, and I. Gràcia, Review on ion mobility spectrometry. Part 1: current instrumentation. Analyst, 140, 1376-1390 (2014).
53. Guido F. V. et al. A fundamental introduction to ion mobility mass spectrometry applied to the analysis of biomolecules. J. Biomol. Tech. 13, 56-61 (2002).
54. Roger G. et al. Atmospheric pressure ion focusing in a high-field asymmetric waveform ion mobility spectrometer. AIP. 70. 1370-1383 (1999).
55. Rian L. G. et al. Liquid extraction surface analysis field asymmetric waveform ion mobility spectrometry mass spectrometry for the analysis of dried blood spots. Analyst. 140. 6879-6885 (2015).
56. Clara L. F. et al. Ambient Ionization and FAIMS Mass Spectrometry for Enhanced Imaging of Multiply Charged Molecular Ions in Biological Tissues. Anal. Chem. 88. 11533-11541 (2016).
57. Rian L. G. et al. LESA FAIMS mass spectrometry for the spatial profiling of proteins from tissue. Anal. Chem. 88. 6758-6766 (2016).
58. P. Langevin, Ann. Chim. Phys., 28, 289–384 (1903).
59. Fei Tang, Xiaohao Wang and Chulong Xu. (2011) FAIMS Biochemical Sensor Based on MEMS Technology, New Perspectives in Biosensors Technology and Applications, Prof. Pier Andrea Serra (Ed.), ISBN: 978-953- 307-448-1, InTech, Available from: http://www.intechopen.com/books/new-perspectives-in-biosensors- technology-and-applications/faims-biochemical-sensor-based-on-mems-technology.
60. Kyle D. D. et al. A pneumatically assisted nanospray desorption electrospray ionization source for increased solvent versatility and enhanced metabolite detection from tissue. Analyst. 142. 3424-3431 (2017).
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/70799-
dc.description.abstract常壓游離質譜影像 (Ambient ionization mass spectrometry imaging)這項技術在這幾十年間不斷進步,除了可以在一大氣壓環境下提供分子在生物樣品中的空間分佈優勢以外,少量的樣品前處理準備也使這類技術備受青睞。即便如此,常壓游離質譜影像也面臨諸多限制與挑戰。比如因為減少樣品前處理 (Sample pretreatment),所產生的基質效應 (Matrix effect)造成待測分子游離效率不佳無法被測量。此外,由於無法提供高空間解析度 (Spatial resolution)品質的圖片,生物組織中細部的化學分子組成便容易被忽略。為了解決上述兩個問題,我們重新設計常壓游離質源並引用電腦模擬運算等方法來改善質譜影像品質以及質譜訊號強度。
常壓游離質譜影像技術可用來診斷生物樣品中的分子組成以及其在空間中的分佈。然而,低空間解析度一直以來都是長壓值譜影像技術的缺點,細緻的組織紋路上的化學分子可能因為低解析度而無法在質譜影像中被清楚描繪。因此,我們將常壓質譜影像平台所收集的質譜影像與透過光學顯微鏡取得之高空間解析度影像利用影像處理以及線性組合等電腦運算工程,將兩個不同來源的影像進行融合以得到一個高空間解析的質譜影像。在此實驗中我們分別使用脫附式電噴灑游離 (DESI)以及奈米脫附式電噴灑游離法 (NanoDESI)作為我們的游離源,來分別描繪小分子如脂質以及蛋白質等大分子在小鼠器官切片中的二維分佈。相鄰的組織切片則是經過蘇木精伊紅染色處理後以光學顯微鏡拍照取得高解析度的照片,再利用電腦運算軟體將兩種圖融合並預測出高空間解析質譜影像圖。
除了空間解析度的限制,基質效應或離子抑制效應 (Ion suppression effect)也是嚴重影響常壓質譜影像品質的問題之一。由於常壓游離源是直接將生物樣品表面上所有的分子全部一起直接送進質量分析器中,在輸送過程中過多的干擾物或是背景雜訊會和待測分析離子進行競爭,導致無法被質譜儀偵測或是訊號強度差。為了移除干擾物 (Interference)以及背景雜訊 (Background noise),我們將場不對稱離子遷移率儀 (Field asymmetry ion mobility spectrometry)與質譜儀結合,藉由場不對稱離子遷移率儀可以在氣象環境中將離子分離的特性,我們可以有效提升質量分析器分析待分析物的效能。
在此實驗中,我們成功利用改建的常壓游離質譜影像游離源將生物組織切片中的分子的分布描繪出,並且在電腦運算以及場不對稱離子遷移率儀的協助下,我們得到高空間解析度的質譜影像以及提升待測分子在質譜中的訊號強度。從實驗結果來看,我們相信新的長壓游離源非常具有潛力,有機會成為不可或缺的分析技術之一。
zh_TW
dc.description.abstractAmbient ionization mass spectrometry imaging (MSI) techniques enable investigating biological samples in situ, and providing their chemical distribution with minimal sample pretreatment. However, due to the coarse spatial resolution of ambient ionization MSI, and dynamic range limitation. Detailed chemical information of the sample might be missing, here we report two methods to solve the problems.
To improve spatial resolution of ambient ionization mass spectrometry imaging, we utilize image fusion paradigm developed by Plas .et .al to fuse both ambient ionization MSI and optical microscopy to generate predictive high spatial resolution MSI. The multimodality paradigm for imaging fusion use multivariate regression and statistic measurement to compare and integrate two distinct image techniques into one. In this study, desorption electrospray ionization (DESI) and nanospray desorption electrospray ionization (nanoDESI) was employed to image lipids and proteins of mouse tissue sections for chemical information acquisition. Whereas H&E stained adjacent sections were employed for high quality spatial information collection.
Furthermore, we integrated field asymmetry ion mobility spectrometry (FAIMS) or so called differential mobility spectrometry with a high mass resolution mass spectrometry to reduce the problem of dynamic range or ion suppression problem. We are able to deplete chemical noise of isobaric compound, background interference from the biological tissues in gas phase before they enter mass analyzer by separate characteristic of FAIMS. Most important of all, dominant compounds will be filtered away and minority chemicals will remain and be focused prior mass analyzing. A pneumatically-assisted nanospray desorption electrospray ionization (pneumatically-assisted nanoDESI) ion source was developed to assist solvent extraction efficiency for depicting spatial distribution of polypeptide in tissue sections. With the FAIMS integrated ambient ionization mass spectrometry imaging system, ion signals of pneumatically assisted nanoDESI mass spectra display diverse polypeptides or proteins compare to the traditional nanoDESI.
The remodel ambient ionization mass spectrometry imaging platform demonstrate its ability provide high quality mass spectrometry images and unveil hidden protein species by integrated with complementary modalities to cover its shortage. Moreover, the platform preserves the advantage of AIMS which enable it to act as another alternative analyze tools in other applications.
en
dc.description.provenanceMade available in DSpace on 2021-06-17T04:38:56Z (GMT). No. of bitstreams: 1
ntu-107-R05223142-1.pdf: 3382824 bytes, checksum: 3f58423c6a2a9fbe6424e3f89536b5ee (MD5)
Previous issue date: 2018
en
dc.description.tableofcontents謝誌 i
摘要 iii
Abstract v
圖目錄 x
表目錄 xiii
Chapter 1. Ambient Ionization Mass Spectrometry Imaging platform 1
1-1 Introduction 1
1-2 Desorption electrospray ionization (DESI) 2
1-3 Nanospray desorption electrospray ionization(nanoDESI) and liquid micro-junction surface sampling probe(LMJ-SSP) 5
1-4 Atmospheric pressure matrix-assisted laser desorption ionization(AP-MALDI) 6
1-5 Applications of ambient ionization mass spectrometry imaging 8
Chapter 2. Improving spatial resolution of ambient ionization mass spectrometry imaging with image fusion paradigm 11
2-1 Introduction 11
2-2 Materials and methods 17
2-2-1 Desorption electrospray ionization 17
2-2-2 Nanospray desorption electrospray ionization 18
2-2-3 Animal samples 18
2-2-4 H&E staining 21
2-2-5 Immunohistochemistry staining 21
2-2-6 Top-Down annotation 22
2-2-7 LC-MS analysis 22
2-2-8 MALDI validation 23
2-2-9 Ambient ionization MSI acquisition 24
2-2-10 Image fusion data treatment 24
2-3 Results 27
Chapter 3. Pneumatic assisted Ambient Ionization FAIMS Mass Spectrometry for Polypeptide Ion Imaging in Biological Tissues 56
3-1 Introduction 56
3-2 Ion mobility spectrometry mass spectrometry analysis 58
3-2-1 Drift time ion mobility spectrometer (DTIMS) 61
3-2-2 Field asymmetry ion mobility spectrometer (FAIMS) 62
3-3 Materials and methods 66
3-4 Pneumatically assisted nanoDESI platform 67
3-5 Results and discussion 71
3-6 Conclusion 75
References 77
Appendix 86
dc.language.isoen
dc.subject常壓游離法zh_TW
dc.subject常壓游離質譜影像zh_TW
dc.subject基質效應zh_TW
dc.subject空間解析度zh_TW
dc.subject脫附式電噴灑游離zh_TW
dc.subject奈米脫附式電噴灑游離法zh_TW
dc.subject場不對稱離子遷移率儀zh_TW
dc.subject背景雜訊zh_TW
dc.subjectMSIen
dc.subjectDESIen
dc.subjectimage fusion paradigmen
dc.subjectdynamic range limitationen
dc.subjectMSIen
dc.subjectspatial resolutionen
dc.subjectdynamic range limitationen
dc.subjectimage fusion paradigmen
dc.subjectDESIen
dc.subjectnanoDESIen
dc.subjectpneumatically-assisted nanoDESIen
dc.subjectFAIMSen
dc.subjectspatial resolutionen
dc.subjectFAIMSen
dc.subjectpneumatically-assisted nanoDESIen
dc.subjectnanoDESIen
dc.title改建常壓質譜游離平台以提升分子影像表現zh_TW
dc.titleReforming Ambient Ionization Mass Spectrometry Platforms towards High Performance in situ Molecular Imagingen
dc.typeThesis
dc.date.schoolyear106-2
dc.description.degree碩士
dc.contributor.oralexamcommittee何佳安,廖仲麒,楊玉良
dc.subject.keyword常壓游離質譜影像,常壓游離法,基質效應,空間解析度,脫附式電噴灑游離,奈米脫附式電噴灑游離法,場不對稱離子遷移率儀,背景雜訊,zh_TW
dc.subject.keywordMSI,spatial resolution,dynamic range limitation,image fusion paradigm,DESI,nanoDESI,pneumatically-assisted nanoDESI,FAIMS,en
dc.relation.page87
dc.identifier.doi10.6342/NTU201802686
dc.rights.note有償授權
dc.date.accepted2018-08-07
dc.contributor.author-college理學院zh_TW
dc.contributor.author-dept化學研究所zh_TW
顯示於系所單位:化學系

文件中的檔案:
檔案 大小格式 
ntu-107-1.pdf
  未授權公開取用
3.3 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved