Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 機械工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/70786
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor陳振山
dc.contributor.authorZheng-Shun Wenen
dc.contributor.author溫正舜zh_TW
dc.date.accessioned2021-06-17T04:38:27Z-
dc.date.available2018-08-08
dc.date.copyright2018-08-08
dc.date.issued2018
dc.date.submitted2018-08-07
dc.identifier.citation[1] V.I. Feodosyev, Selected Problems and Questions in Strength of Materials. Mir, Moscow. Translated from the Russian by M. Konyaeva, 1977.
[2] D.P. Vaillette, G.G. Adams. An elastic beam contained in a frictionless channel, ASME J. Appl. Mech. 50 (1983) 693–694.
[3] G.G. Adams, R.C. Benson, Postbuckling of an elastic plate in a rigid channel, Int. J. Mech. Sci. 28 (1986) 153–162.
[4] X. Chateau, Q.S. Nguyen, Buckling of elastic structures in unilateral contact with or without friction, Eur. J. Mech. A-Solid 1 (1991) 71-89.
[5] N. Adan, I. Sheinman, E. Altus, Post-buckling behavior of beams under contact constraints, ASME J. Appl. Mech. 61 (1994) 764–772.
[6] G. Domokos, P. Holmes, B. Royce, Constrained Euler buckling, J. Nonlinear Sci. 7 (1997) 281-314.
[7] H. Chai, The post-buckling behavior of a bilaterally constrained column, J. Mech. Phys. Solids 46 (1998) 1155–1181.
[8] P. Holmes, G. Domokos, J. Schmitt, I. Szeberenyi, Constrained Euler buckling: an interplay of computation and analysis, Comput. Method Appl. M. 170 (1999) 175-207.
[9] B. Roman, A. Pocheau, Buckling cascade of thin plates: forms, constraints and similarity, Europhys. Lett. 46 (1999) 602–608.
[10] H. Chai, On the post-buckling behavior of bilaterally constrained plates, Int. J. Solids Struct. 39 (2002) 2911-2926.
[11] B. Roman, A. Pocheau, Postbuckling of bilaterally constrained rectangular thin plates, J. Mech. Phys. Solids 50 (2002) 2379-2401.
[12] J.-S. Chen, and S.-Y. Hung, Deformation and stability of an elastica Constrained by curved surfaces, International Journal of Mechanical Sciences 82 (2004) 1-12.
[13] W.-C. Ro, J.-S. Chen, S.-Y. Hung, Vibration and stability of a constrained elastica with variable length, Int. J. Solids Struct. 47 (2010) 2143-2154.
[14] V. Denoel, E. Detournay, Eulerian formulation of constrained elastica, Int. J. Solids Struct. 48 (2011) 625-636.
[15] J.-S. Chen, C.-J. Lu, C.-Y. Lee, On the use of energy method with element splitting to determine the stability of a constrained elastica, International Journal of Non-Linear Mechanics 76 (2015) 77-86.
[16] J.-S. Chen, L.-Y. Hua, Effects of clamping misalignments on the line-contact deformation of a constrained elastica. International Journal of Non-Linear Mechanics (2018) .
[17] J.-S. Chen, On the contact behavior of a buckled Timoshenko beam constrained laterally by a plane wall. Acta Mechanica, 222 (2011) 225-232.
[18] R.S. Manning, G.B. Bulman, Stability of an elastic rod buckling into a soft wall, Proc. R. Soc. A 461 (2005) 2423-2450
[19] S. Katz, S. Givli, The post-buckling behavior of a beam constrained by springy walls, Journal of the Mechanics and Physics of Solids 78 (2015) 443–466.
[20] S. Katz, S. Givli, The postbuckling behavior of planar elastica constrained by a deformable wall, ASME, J. Appl. Mech. 84 (2015) 051001.
[21] M. Hetenyi, Beams on Elastic Foundation. The University of Michigan Press, Ann Arbor, 1946.
[22] J.-S. Chen, H.-H. Wu, Deformation and stability of an elastica under a point force and constrained by a flat surface, International Journal of Mechanical Sciences 53 (2011) 42-50.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/70786-
dc.description.abstract本論文研究在一對溫克勒彈簧牆拘束下銷接樑的變形與振動分析,採用小變形理論。靜態分析表示挫曲樑與彈簧牆先呈現一線接觸,之後演變成兩線接觸。在力(邊緣推力)和位移(末端縮短量)關係圖中,存在一個最大邊緣推力。兩線接觸在此最大推力前後有明顯得不同。兩線接觸時,在邊緣推力到達最高點前,未接觸段的中點維持在彈簧牆附近。在超過最高點後,未接觸段的中點遠離彈簧牆直到中點碰到對面的彈簧牆。在振動分析中,本文考慮負載控制和位移控制,在負載控制下,變形達到最大邊緣推力前為穩定的,而經過最高點之後為不穩定的。在位移控制下,即使經過最大邊緣推力之後,變形也可保持穩定。對於反對稱型態的振動模態來說,自然頻率在負載控制和位移控制下都相同。對於對稱型態的振動模態來說,自然頻率在位移控制下一般都高於負載控制下的自然頻率。zh_TW
dc.description.abstractIn this paper we study the deformation and vibration of a pinned-pinned buckled beam constrained by a pair of springy walls of the Winkler type. Small deformation theory is adopted. Static analysis shows that the buckled beam contacts the springy wall in one segment first and then evolves to two-segment contact. In the edge thrust verses end shortening diagram, there exists a maximum edge thrust. The two-segment contact deformations before and after reaching the peak thrust are significantly different. Before reaching the peak, the free-of-contact segment in the middle stays close to the wall. After passing the peak, the free-of-contact segment moves away from the wall until the midpoint touches the opposite wall. In vibration analysis, both load control and displacement control are considered. In load control, the deformation before the edge thrust reaches its maximum is stable, while the one past the peak is unstable. In displacement control, the deformation may remain stable even after passing the maximum thrust. For anti-symmetric vibration modes, the natural frequencies are the same for load and displacement controls. For symmetric modes, the natural frequencies of displacement control are in general higher than the corresponding ones in load control.en
dc.description.provenanceMade available in DSpace on 2021-06-17T04:38:27Z (GMT). No. of bitstreams: 1
ntu-107-R05522526-1.pdf: 2813545 bytes, checksum: 7d8c3176fdd460cc342408372df40a13 (MD5)
Previous issue date: 2018
en
dc.description.tableofcontents摘要 i
ABSTRACT ii
目錄 iii
圖目錄 v
表目錄 vii
第一章 導論 1
第二章 理論模型與運動方程式 3
第三章 解析法 5
3.1 一線接觸 5
3.2 兩線接觸 7
第四章 GALERKIN’S METHOD 9
4.1 一線接觸 10
4.2 兩線接觸 11
第五章 振動及穩定性分析 13
第六章 數值結果 14
6.1 靜態變形 14
6.2 自然頻率 21
第七章 其他變形型態 24
7.1 其他變形型態 24
7.2 變形地圖及穩定性分析 29
7.3 穩定的非對稱變形 32
7.4 彈簧牆趨近於剛性面 46
第八章 結論 48
參考文獻 49
附錄A 運動方程式(2.1)和(2.2)無因次化過程 51
附錄B 解析解一線接觸推導 53
附錄C 推導pb 55
附錄D 對稱振動模態形狀與模態分量 56
附錄F 各能量無因次化過程 66
附錄G C點與同推力下各平衡位置能量 67
附錄H GALERKIN’S METHOD 靜態與動態模擬程式碼 68
dc.language.isozh-TW
dc.title受彈簧牆拘束銷接樑的變形與振動分析zh_TW
dc.titleDeformation and vibration of a buckled beam constrained by springy wallsen
dc.typeThesis
dc.date.schoolyear106-2
dc.description.degree碩士
dc.contributor.oralexamcommittee盧中仁,莊嘉揚
dc.subject.keyword挫曲樑,彈簧牆,穩定性,zh_TW
dc.subject.keywordbuckled beam,springy wall,stability,en
dc.relation.page77
dc.identifier.doi10.6342/NTU201802690
dc.rights.note有償授權
dc.date.accepted2018-08-08
dc.contributor.author-college工學院zh_TW
dc.contributor.author-dept機械工程學研究所zh_TW
顯示於系所單位:機械工程學系

文件中的檔案:
檔案 大小格式 
ntu-107-1.pdf
  目前未授權公開取用
2.75 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved