Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 管理學院
  3. 資訊管理學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/70784
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor盧信銘(Hsin-Min Lu)
dc.contributor.authorYao-Yu Tsaien
dc.contributor.author蔡曜宇zh_TW
dc.date.accessioned2021-06-17T04:38:22Z-
dc.date.available2019-08-08
dc.date.copyright2018-08-08
dc.date.issued2018
dc.date.submitted2018-08-07
dc.identifier.citation參考文獻
Avila, C. P., & Vijaya, M. (2016). Click through rate prediction for display advertisement.
International Journal of Computer Applications, 136(1).
Broder, A. Z. (2008). Computational advertising. Paper presented at the SODA.
Chapelle, O. (2014). Modeling delayed feedback in display advertising. Paper presented
at the Proceedings of the 20th ACM SIGKDD international conference on
Knowledge discovery and data mining.
Chapelle, O., Manavoglu, E., & Rosales, R. (2015). Simple and scalable response
prediction for display advertising. ACM Transactions on Intelligent Systems and
Technology (TIST), 5(4), 61.
Chen, J.-H., Zhao, Z.-Q., Shi, J.-Y., & Zhao, C. (2017). A New Approach for Mobile
Advertising Click-Through Rate Estimation Based on Deep Belief Nets.
Computational intelligence and neuroscience, 2017.
Chen, J., Sun, B., Li, H., Lu, H., & Hua, X.-S. (2016a). Deep ctr prediction in display
advertising. Paper presented at the Proceedings of the 2016 ACM on Multimedia
Conference.
Chen, Q.-H., Yu, S.-M., Guo, Z.-X., & Jia, Y.-B. (2016b). Estimating Ads’ Click through
Rate with Recurrent Neural Network. Paper presented at the ITM Web of
Conferences.
Cheng, H.-T., Koc, L., Harmsen, J., Shaked, T., Chandra, T., Aradhye, H., . . . Ispir, M.
(2016). Wide & deep learning for recommender systems. Paper presented at the
Proceedings of the 1st Workshop on Deep Learning for Recommender Systems.
Cheng, H., Zwol, R. v., Azimi, J., Manavoglu, E., Zhang, R., Zhou, Y., & Navalpakkam,
V. (2012). Multimedia features for click prediction of new ads in display
advertising. Paper presented at the Proceedings of the 18th ACM SIGKDD
international conference on Knowledge discovery and data mining.
Chung, J., Gulcehre, C., Cho, K., & Bengio, Y. (2014). Empirical evaluation of gated
recurrent neural networks on sequence modeling. Presented in NIPS 2014 Deep
Learning and Representation Learning Workshop.
Cui, Y., Zhang, R., Li, W., & Mao, J. (2011). Bid landscape forecasting in online ad
exchange marketplace. Paper presented at the Proceedings of the 17th ACM
SIGKDD international conference on Knowledge discovery and data mining.
Dave, K. S., & Varma, V. (2010). Learning the click-through rate for rare/new ads from
similar ads. Paper presented at the Proceedings of the 33rd international ACM
SIGIR conference on Research and development in information retrieval.
Dembczynski, K., Kotlowski, W., & Weiss, D. (2008). Predicting ads clickthrough rate
with decision rules. Paper presented at the Workshop on targeting and ranking in
online advertising.
Friedman, J. H. (2001). Greedy function approximation: a gradient boosting machine.
Annals of statistics, 1189-1232.
Ghosh, A., Rubinstein, B. I., Vassilvitskii, S., & Zinkevich, M. (2009). Adaptive bidding
for display advertising. Paper presented at the Proceedings of the 18th
international conference on World wide web.
Graves, A., Mohamed, A.-r., & Hinton, G. (2013). Speech recognition with deep recurrent
neural networks. Paper presented at the Acoustics, speech and signal processing
(icassp), 2013 ieee international conference on.
Guo, H., Tang, R., Ye, Y., Li, Z., & He, X. (2017). DeepFM: A Factorization-Machine
based Neural Network for CTR Prediction. In IJCAI. 2782–2788.
He, X., Pan, J., Jin, O., Xu, T., Liu, B., Xu, T., . . . Bowers, S. (2014). Practical lessons
from predicting clicks on ads at facebook. Paper presented at the Proceedings of
the Eighth International Workshop on Data Mining for Online Advertising.
Hinton, G. E., & Salakhutdinov, R. R. (2006). Reducing the dimensionality of data with
neural networks. science, 313(5786), 504-507.
Hochreiter, S., & Schmidhuber, J. (1997). Long short-term memory. Neural computation,
9(8), 1735-1780.
Kondakindi, G., Rana, S., Rajkumar, A., Ponnekanti, S. K., & Parakh, V. (2014). A
logistic regression approach to ad click prediction. Mach. Learn.-Cl. Proj.
Krizhevsky, A., Sutskever, I., & Hinton, G. E. (2012). Imagenet classification with deep
convolutional neural networks. Paper presented at the Advances in neural
information processing systems.
Lang, T., & Rettenmeier, M. (2017). Understanding consumer behavior with recurrent
neural networks. Paper presented at the International Workshop on Machine
Learning Methods for Recommender Systems.
LeCun, Y., Bengio, Y., & Hinton, G. (2015). Deep learning. nature, 521(7553), 436.
Lee, K.-C., Jalali, A., & Dasdan, A. (2013). Real time bid optimization with smooth
budget delivery in online advertising. Paper presented at the Proceedings of the
Seventh International Workshop on Data Mining for Online Advertising.
Lee, K.-c., Orten, B., Dasdan, A., & Li, W. (2012). Estimating conversion rate in display
advertising from past erformance data. Paper presented at the Proceedings of the
18th ACM SIGKDD international conference on Knowledge discovery and data
mining.
Lipton, Z. C., Berkowitz, J., & Elkan, C. (2015). A critical review of recurrent neural
networks for sequence learning. CoRR, 1506.00019, 2015.
Liu, Q., Yu, F., Wu, S., & Wang, L. (2015). A convolutional click prediction model.
Paper presented at the Proceedings of the 24th ACM International on Conference
on Information and Knowledge Management.
McMahan, H. B., Holt, G., Sculley, D., Young, M., Ebner, D., Grady, J., . . . Golovin, D.
(2013). Ad click prediction: a view from the trenches. Paper presented at the
Proceedings of the 19th ACM SIGKDD international conference on Knowledge
discovery and data mining.
Pan, Z., Chen, E., Liu, Q., Xu, T., Ma, H., & Lin, H. (2016). Sparse Factorization
Machines for Click-through Rate Prediction. Paper presented at the Data Mining
(ICDM), 2016 IEEE 16th International Conference on.
Ren, K., Zhang, W., Rong, Y., Zhang, H., Yu, Y., & Wang, J. (2016). User response
learning for directly optimizing campaign performance in display advertising.
Paper presented at the Proceedings of the 25th ACM International on Conference
on Information and Knowledge Management.
Rendle, S. (2012a). Factorization machines with libfm. ACM Transactions on Intelligent
Systems and Technology (TIST), 3(3), 57.
Rendle, S. (2012b). Social network and click-through prediction with factorization
machines. Paper presented at the KDD-Cup Workshop.
Richardson, M., Dominowska, E., & Ragno, R. (2007). Predicting clicks: estimating the
click-through rate for new ads. Paper presented at the Proceedings of the 16th
international conference on World Wide Web.
Shen, S., Hu, B., Chen, W., & Yang, Q. (2012). Personalized click model through
collaborative filtering. Paper presented at the Proceedings of the fifth ACM
international conference on Web search and data mining.
Ta, A.-P. (2015). Factorization machines with follow-the-regularized-leader for CTR
prediction in display advertising. Paper presented at the Big Data (Big Data), 2015
IEEE International Conference on.
Trofimov, I., Kornetova, A., & Topinskiy, V. (2012). Using boosted trees for clickthrough
rate prediction for sponsored search. Paper presented at the Proceedings
of the Sixth International Workshop on Data Mining for Online Advertising and
Internet Economy.
Vincent, P., Larochelle, H., Bengio, Y., & Manzagol, P.-A. (2008). Extracting and
composing robust features with denoising autoencoders. Paper presented at the
Proceedings of the 25th international conference on Machine learning.
Wang, F., Suphamitmongkol, W., & Wang, B. (2013). Advertisement click-through rate
prediction using multiple criteria linear programming regression model. Procedia
Computer Science, 17, 803-811.
Wang, R., Fu, B., Fu, G., & Wang, M. (2017). Deep & Cross Network for Ad Click
Predictions. In Proceedings of the ADKDD'17 (p. 12). ACM.
Wu, W. C.-H., Yeh, M.-Y., & Chen, M.-S. (2015). Predicting winning price in real time
bidding with censored data. Paper presented at the Proceedings of the 21th ACM
SIGKDD International Conference on Knowledge Discovery and Data Mining.
Yan, L., Li, W.-j., Xue, G.-R., & Han, D. (2014). Coupled group lasso for web-scale ctr
prediction in display advertising. Paper presented at the International Conference
on Machine Learning.
Yi, J., Chen, Y., Li, J., Sett, S., & Yan, T. W. (2013). Predictive model performance:
Offline and online evaluations. Paper presented at the Proceedings of the 19th
ACM SIGKDD international conference on Knowledge discovery and data
mining.
Yuan, S., Wang, J., & Zhao, X. (2013). Real-time bidding for online advertising:
measurement and analysis. Paper presented at the Proceedings of the Seventh
International Workshop on Data Mining for Online Advertising.
Yuan, Y., Wang, F., Li, J., & Qin, R. (2014). A survey on real time bidding advertising.
Paper presented at the Service Operations and Logistics, and Informatics (SOLI),
2014 IEEE International Conference on.
Zhang, W., Du, T., & Wang, J. (2016). Deep learning over multi-field categorical data.
Paper presented at the European conference on information retrieval.
Zhang, W., Yuan, S., Wang, J., & Shen, X. (2014a). Real-time bidding benchmarking
with iPinYou dataset. Bid 501.015300008 (2014): 3f5a4f5121.
Zhang, W., Zhang, Y., Gao, B., Yu, Y., Yuan, X., & Liu, T.-Y. (2012). Joint optimization
of bid and budget allocation in sponsored search. Paper presented at the
Proceedings of the 18th ACM SIGKDD international conference on Knowledge
discovery and data mining.
Zhang, Y., Dai, H., Xu, C., Feng, J., Wang, T., Bian, J., . . . Liu, T.-Y. (2014b). Sequential
Click Prediction for Sponsored Search with Recurrent Neural Networks. Paper
presented at the AAAI.
Zhou, G., Song, C., Zhu, X., Ma, X., Yan, Y., Dai, X., . . . Gai, K. (2017). Deep Interest
Network for Click-Through Rate Prediction. stat 1050 (2017): 23.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/70784-
dc.description.abstract廣告點擊率預測是線上廣告的重要研究方向之一,隨著即時競價機制興起與公開資料公布,廣告研究重心從贊助搜索廣告轉移到即時競價中的展示型廣告,大部分研究運用機器學習預測使用者在假設每筆廣告曝光為獨立的情況是否點擊,但使用者真實的網站點擊行為是會受到先前使用經驗影響。所以本篇研究除了將文獻提出的廣告點擊率預測模型應用於展示型廣告資料集上,更以使用者為中心參考使用者歷史廣告特徵的序列實驗方式來設計出不同的廣告點擊假設,探討新的實驗假設是否能提升模型對廣告點擊率預測的表現。
本篇研究使用的是 Avazu 公司在 Kaggle 平台舉辦的廣告點擊率預測競賽資料集,將此次實驗分別以三個實驗假設進行設計與實做探討,分別為 (1) 單一獨立廣告實驗假設 (2) 考慮使用者歷史廣告展示序列實驗假設 (針對時間相關特徵) (3) 考慮使用者歷史廣告展示序列實驗假設 (考慮所有相關特徵)。接著從預測模型與特徵工程方面提出模型改良與特徵工程來提升點擊率預測表現,我們提出名為 CNN&GRU 模型,主要運用 Wide&Deep 模型架構來結合卷積神經網路與 GRU (Gated Recurrent Unit) 模型,針對使用者歷史點擊經驗會影響下次點擊率的特性,將歷史點擊經驗量化為新特徵進行預測。最後探討序列實驗的長度變化與類神經網路模型架構對模型在各實驗假設預測表現的影響性。
實驗結果反映出模型結構不同會導致模型學習特徵方式與特徵資訊也會不同,並影響模型在不同實驗假設的表現差異。接著,在只運用時間特徵資訊的序列假設下無法有效進行點擊率預測,但在運用歷史廣告相關特徵的序列假設下能有效幫助模型提高預測表現。實驗結果也證實所提出的 CNN&GRU 模型與特徵工程能有效提升點廣告擊率預測表現,並且歷史特徵序列長度增加與類神經相關模型的內部構造參數調整也會提升模型對廣告點擊率預測表現。
zh_TW
dc.description.abstractAdvertising click through rate prediction is one of the fundamental problems in online advertising. Researchers have already adopted machine learning approaches to predict advertising click for each ad view independently. However, as observed user’s behaviors on ads yield high dependency on how the user behaved along with the past time. Therefore, in addition to applying the models to the display advertising dataset, we also
design ad click hypotheses based on user historical advertising features.
In this study, we propose a model called CNN&GRU that uses the Wide&Deep model architecture to combine the convolutional neural network with the GRU (Gated Recurrent Unit) model, and then discusses the influence of feature engineering, sequence experiment length variation and neural network related model architecture. In addition, we used Avazu's advertising click-through rate forecasting contest dataset on the Kaggle platform to examine our proposed model. The experiment was implemented with independent and sequence hypotheses.

Our results show that different model structures will affect the performance in different hypotheses. Using only the time feature information can not effectively predict the click-through rate, but the sequence hypothesis can effectively improve the forecast
performance. In addition, CNN&GRU model, feature engineering and the increase of the historical feature sequence can also improve the prediction performance.
en
dc.description.provenanceMade available in DSpace on 2021-06-17T04:38:22Z (GMT). No. of bitstreams: 1
ntu-107-R05725012-1.pdf: 3200583 bytes, checksum: 97685e4a4fbe3552c581dcff87c0d6ea (MD5)
Previous issue date: 2018
en
dc.description.tableofcontents主目錄
口試委員審定書………………………………………………………………………………….i
誌謝………………………………………………………………………………………………ii
摘要……………………………………………………………………………………………...iii
Abstract ....……………………………………………………………………………………….iv
主目錄....…………………………………………………………………………………………v
圖目錄………………………………………………………………………………………….viii
表目錄……………………………………………………………………………………………x
第一章 緒論 ............................................................................................................................. 1
1.1 研究背景與動機..................................................................................................... 1
1.2 研究目的................................................................................................................. 5
1.3 研究架構................................................................................................................. 5
第二章 文獻探討......................................................................................................................... 6
2.1 即時競價的投標策略與得標價預測..................................................................... 6
2.1.1 競標價格策略......................................................................................................... 7
2.1.2 廣告點擊率重要性................................................................................................. 9
2.2 廣告的點擊與轉換率預測................................................................................... 11
2.2.1 廣告點擊率特徵處理........................................................................................... 14
2.2.2 廣告點擊率預測模型 (線性模型) ...................................................................... 16
2.2.3 廣告點擊率預測模型 (非線性模型)................................................................... 18
2.2.4 廣告點擊率預測模型 (類神經相關模型)........................................................... 21
2.2.5 廣告點擊率預測模型 (混合相關模型)............................................................... 27
2.2.6 廣告點擊率在線學習........................................................................................... 31
2.2.7 廣告轉換率預測................................................................................................... 33
2.3 序列性廣告研究與模型....................................................................................... 34
2.4 小結....................................................................................................................... 37
第三章 研究方法 ................................................................................................................... 38
3.1 資料來源及處理................................................................................................... 38
3.1.1 資料前處理........................................................................................................... 39
3.2 研究流程............................................................................................................... 44
3.2.1 單一獨立廣告實驗假設....................................................................................... 45
3.2.2 考慮使用者歷史廣告展示序列實驗假設(針對時間相關特徵)......................... 46
3.2.3 考慮使用者歷史廣告展示序列實驗假設(考慮所有相關特徵)......................... 48
3.3 預測模型............................................................................................................... 50
3.3.1 邏輯迴歸模型....................................................................................................... 51
3.3.2 梯度提升決策樹模型........................................................................................... 52
3.3.3 因式分解機模型................................................................................................... 53
3.3.4 類神經網路模型................................................................................................... 54
3.3.5 卷積神經網路模型............................................................................................... 55
3.3.6 循環神經網路相關模型....................................................................................... 56
3.3.7 梯度提升決策樹模型 + 邏輯迴歸模型............................................................. 57
3.3.8 Wide & Deep 模型............................................................................................... 58
3.4 特徵工程與模型設計........................................................................................... 60
3.4.1 特徵工程............................................................................................................... 60
3.4.2 模型設計............................................................................................................... 61
3.5 序列長度與類神經模型架構影響....................................................................... 63
3.6 衡量指標............................................................................................................... 65
3.6.1 AUC 衡量指標...................................................................................................... 65
3.6.2 Logloss 衡量指標 ................................................................................................. 66
第四章 結果與討論 ............................................................................................................... 67
4.1 實驗假設結果....................................................................................................... 67
4.1.1 實驗假設一結果................................................................................................... 67
4.1.2 實驗假設二結果................................................................................................... 69
4.1.3 實驗假設三結果................................................................................................... 71
4.1.4 實驗假設比較....................................................................................................... 73
4.2 模型設計與特徵工程........................................................................................... 75
4.2.1 模型設計結果....................................................................................................... 75
4.2.2 特徵工程結果....................................................................................................... 77
4.3 序列長度影響性探討........................................................................................... 79
4.3.1. 實驗假設二與假設三結果................................................................................... 79
4.4 類神經相關模型架構探討................................................................................... 81
4.4.1 類神經網路模型架構探討................................................................................... 81
4.4.2 卷積神經網路模型架構探討............................................................................... 83
第五章 結論與建議 ............................................................................................................... 85
5.1 研究結果............................................................................................................... 85
5.2 研究貢獻............................................................................................................... 86
5.3 未來方向............................................................................................................... 87
參考文獻......................................................................................................................................88
dc.language.isozh-TW
dc.subject序列性廣告點擊zh_TW
dc.subject廣告點擊率zh_TW
dc.subject推薦系統zh_TW
dc.subject展示型廣告zh_TW
dc.subject混合模型zh_TW
dc.subjectHybrid Modelsen
dc.subjectRecommder Systemen
dc.subjectDisplay Adsen
dc.subjectAd Click-Through Rateen
dc.subjectSequence Ads Clicksen
dc.title展示型廣告點擊率預測模型 : 比較與應用zh_TW
dc.titleClick Through Rate Predict for Display Advertising :
Comparisons and Applications
en
dc.typeThesis
dc.date.schoolyear106-2
dc.description.degree碩士
dc.contributor.oralexamcommittee洪為璽(Wei-Hsi Hung),余峻瑜(Jun-Yu Yu)
dc.subject.keyword廣告點擊率,推薦系統,展示型廣告,序列性廣告點擊,混合模型,zh_TW
dc.subject.keywordAd Click-Through Rate,Recommder System,Display Ads,Sequence Ads Clicks,Hybrid Models,en
dc.relation.page91
dc.identifier.doi10.6342/NTU201802540
dc.rights.note有償授權
dc.date.accepted2018-08-08
dc.contributor.author-college管理學院zh_TW
dc.contributor.author-dept資訊管理學研究所zh_TW
顯示於系所單位:資訊管理學系

文件中的檔案:
檔案 大小格式 
ntu-107-1.pdf
  未授權公開取用
3.13 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved