Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 電機資訊學院
  3. 電子工程學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/70774
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor呂良鴻(Liang-Hung Lu)
dc.contributor.authorPo-Chih Kuen
dc.contributor.author顧博智zh_TW
dc.date.accessioned2021-06-17T04:38:00Z-
dc.date.available2023-08-21
dc.date.copyright2018-08-21
dc.date.issued2018
dc.date.submitted2018-08-08
dc.identifier.citation[1] E. Brunner, Ultrasound system consideration and their impact on front-end components, Norwood, MA: Analog Devices, Inc., 2007 [Online]. Available: http://www.analog.com/library/analogDialogue/archives/3603/ultrasound/UltrasoundFrontend.pdf
[2] Wikipedia: The Free Encyclopedia. Wikimedia Foundation Inc. Updated 20 June 2012, 10:55 UTC. Encyclopedia on-line. Available from http://en.wikipedia.org/wiki/Attenuation. Internet. Retrieved 10 July 2012
[3] B. Herman and G. Harris, Models and regulatory considerations for the transient temperature rise during diagnostic ultrasound pulses. Ultrasound in Medicine and Biology, 28(9):1217-1224, 2002.
[4] AD9272 Octal LNA/VGA/AAF/ADC and Crosspoint Switch, document AD9272, Analog Devices Inc., 2009.
[5] B. Razavi, Design of Analog CMOS Integrated Circuits, New York: McGraw-Hill, 2001.
[6] AFE5807 Fully Integrated, 8-Channel Ultrasound Analog Front End with Passive CW Mixer, 1.05 nV/rtHz, 12-Bit, 80 MSPS, 117 mW/CHh, document AFE5807, Analog Devices Inc., 2010.
[7] AD9273 Octal LNA/VGA/AAF/ADC and Crosspoint Switch, document AD9273, Texas Instruments Inc., 2009.
[8] G. Gurun, P. Hasler, and F. L. Degertekin, “Front-end receiver electronics for high-frequency monolithic CMUT-on-CMOS imaging arrays,” IEEE Trans. Ultrason., Ferroelect., Freq. Control, vol. 58, no. 8, pp. 1658–1668, Aug. 2011.
[9] J. Yoon, S. Lee, J. Kim, N. Song, J. Koh, and J. Choi, “Low-noise amplifier path for ultrasound system applications,” in Proc. IEEE Asia Pacific Conf. Circuits and Systems, pp. 244–247, Dec. 2010.
[10] H.-K. Cha, “CMOS ultrasonic analogue front-end with reconfigurable pulser/switch for medical imaging applications”, IET Electronics Letters, vol. 51, no. 20, Oct. 2015.
[11] D. Reda, E. Hegazi, K. N. Salama, and H. F. Ragai, “Design of low noise transimpedance amplifier for Intravascular Ultrasound,” in Biomedical Circuits and Systems Conference IEEE, pp. 57-60, 2009.
[12] Y. Wang, M. Koen, and D. Ma, “Low-noise CMOS TGC amplifier with adaptive gain control for ultrasound imaging receivers,” IEEE Trans. Circuit Syst. II. Exp. Briefs, vol. 58, no. 1, pp. 26–30, Jan. 2011.
[13] AFE5801 8-Channel Variable-Gain Amplifier (VGA) With Octal High-Speed ADC, document AFE5801, Texas Instruments Inc., 2010.
[14] C.-F. Liang, S.-H. Chen, and S.-I. Liu, “A digital calibration technique for charge pump in phase-locked loop system,” IEEE J. Solid-State Circuits, vol. 42, pp. 390–398, Feb. 2008.
[15] C. Xin and E. Sanchez-Sinencio, “A linearization technique for RF low noise amplifier,” in Proc. Int. Circuits Syst. Symp., May 2004, vol. 4,pp. IV-313–IV-316, vol. 4.
[16] W. C. Song, C. J. Oh, G. H. Cho, and H. B. Jung, “High frequency/high dynamic range CMOS VGA,” Electron. Lett., vol. 36, no. 13, pp. 1096–1098, Jun. 2000.
[17] P.-K. Tsai, P.-C. Ku, C.-C. Lu, C.-M. Shih, and L.-H. Lu, “A precise decibel-linear programmable-gain amplifier for ultrasound imaging receivers,” in Proc. IEEE Int. Symp. on VLSI Design, Automation, and Test, 2016.
[18] H. D. Lee, K. A. Lee, and S. Hong, “Wideband VGAs using a CMOS transconductor in triode region,” in Proc. 36th Eur. Microw. Conf., Sep. 2006, pp. 1449–1452.
[19] C.-C. Hsu and J.-T. Wu, “A Highly linear 125-MHz CMOS switched-resistor programmable-gain amplifier,” IEEE J. Solid-State Circuits, vol. 38, pp. 1663–1670, Oct. 2003.
[20] J. Sombrin, “Non-analytic at the origin, behavioural models for active or passive non-linearity,” Int. J. Microw. Wireless Techn., vol. 5, no. 2, pp. 133–140, 2013.
[21] I. S. Han, and S. B. Park, “Voltage-controlled linear resistor by two MOS transistors and its application to active RC filter MOS integration,” Proceedings of the IEEE, vol. 72, no. 11, pp. 1655-1657, 1984.
[22] F. Yucel and E. Yuce, “A new electronically fine tunable grounded voltage controlled positive resistor,” IEEE Trans. Circuit Syst. II. Exp. Briefs, vol. 65, no. 4, pp. 451–455, Apr. 2018.
[23] T. Sakurai and A. R. Newton, “Alpha–power law MOSFET model and it applications to CMOS inverter delay and other fomulas,” IEEE J. Solid-State Circuits, vol. 25, pp. 584–594, Apr. 1990.
[24] T. Sakurai and A. R. Newton, “A simple MOSFET model for citcuit analysis,” IEEE Trans. Electron Devices, vol. 38, pp. 887–894, Apr. 1991.
[25] F. Resta, S. D’Amico, M. De Matteis, and A. Baschirotto, “An improved source-follower based Sallen-Key continuous-time biquadratic cell with auxiliary path,” in NORCHIP, 2014, 2014, pp. 1–4.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/70774-
dc.description.abstract隨著可攜式和手持式超音波影像系統在各種應用上的需求增長,設計其類比前端電路變成一個重要的議題,尤其是在有限的功率預算下,設計出最大的動態範圍。此篇論文使用0.13-µm CMOS製程實作一個接收鏈路,其中包含低雜訊放大器(LNA),壓控衰減器(VCA),可程式化放大器(PGA),以及低通濾波器(LPF)。
使用合理的功耗,LNA的雜訊以及線性度表現良好,可得到最佳的動態範圍。此外,在LNA的其他規格諸如輸入阻抗匹配,消除直流偏移,共模回授,以及過載回復時間也都進行考量。在接續的VCA之中,在考量控制增益範圍,誤差,線性度,雜訊,以及不匹配性之後,本論文呈現完整的設計流程包含細部尺寸方法。本論文提出一個全新的電阻線性化技巧應用在VCA中,其中元件的短通道效應也適當的考慮到了。之後的PGA中,設計了兩個增益模式以供選擇,以對應預計的類比數位轉換器的震幅。最後,LPF設計成三階的形式,並且有兩個可控制的頻寬。
根據系統需求以及功耗預算,接收鏈路中重要的設計參數都進行詳細考量。使用3.3伏特的電源電壓,此類比接收前端電路達到1.1 nV/rtHz的輸入雜訊,42 dB的控制範圍,在2 VPP的輸出條件下所有諧波失真皆控制在-50 dBc之內。此電路僅消耗80 mW,可與部分市售產品匹敵,非常適合應用在手持式應用中。
zh_TW
dc.description.abstractAs the increasing demand of ultrasound imaging system in wide variety of hand-held devices in diagnostic medicine, design of analog receiver front-end circuits has become an important issue, especially enlarging the dynamic range with a limited power budget. In this dissertation, a receiver chain including low-noise amplifier (LNA), voltage-controlled attenuator (VCA), programmable-gain amplifier (PGA), and low-pass filter (LPF) is realized in a 0.13-µm CMOS process.
With reasonable power consumption, good harmonic distortions and input-referred noise in the LNA are achieved, leading to an optimized dynamic range. Besides, other minor LNA specifications such as input matching, dc-offset cancellation, common-mode feedback, and overload recovery time are also considered. In the following VCA stage, a design procedure including sizing strategy is given, which analyzes controlled range, gain error, linearity, noise, and mismatch in detail. To further reduce the distortion, a simple and effective linearization technique suitable for voltage-controlled MOS resistors is proposed, where the short-channel-device model is utilized for analysis. In the last stages of this receiver chain, the PGA with two gain modes provides appropriate voltage gains for the aimed analog-to-digital convertor, while the 3rd LPF has two controllable frequency corners, which is responsible for anti-aliasing.
According to the system requirements and the power budget in a full receiver chain, this dissertation also discusses the parameters’ selection as well as the trade-off. Using 1.2-V and 3.3-V supply voltages, the proposed analog receiver chain achieves 1.1-nV/rtHz input-referred noise, 42-dB gain range, 0.6-dB gain error, 10/20-MHz 3rd frequency corner, and 2-VPP output swing with HDs better than -50 dBc. Consuming power less than 80 mW, the proposed work is proved suitable for the systems in hand-held devices and has comparable performances with commercial products.
en
dc.description.provenanceMade available in DSpace on 2021-06-17T04:38:00Z (GMT). No. of bitstreams: 1
ntu-107-F97943114-1.pdf: 4677879 bytes, checksum: 5d9aae9a831556c29df92a2c8ad40976 (MD5)
Previous issue date: 2018
en
dc.description.tableofcontents誌謝 i
摘要 iii
Abstract v
Contents vii
List of Figures x
List of Tables xiii
Chapter 1 Introduction 1
1.1 Medical Ultrasound Imaging 1
1.2 Operation of a Pulse-Echo Routine 2
1.3 System Architecture 3
1.4 Dissertation Organization 4
Chapter 2 Background, Motivation, and Overview of the Design 6
2.1 Signal Attenuation 6
2.2 Dynamic Range 7
2.3 Linearity 9
2.4 Review and Dissertation Motivation 11
2.5 Overview of the Design 12
Chapter 3 Design of the Low-Noise Amplifier 17
3.1 Background 17
3.2 Review of the Differential Pairs 18
3.3 Output Common-Mode Feedback 20
3.4 DC Offset Cancellation 22
3.5 Overload Recovery Time 23
3.6 Linearity 24
3.7 Input Matching 27
3.8 Experimental Results 29
3.9 Brief Summary 34
Chapter 4 Design of Decibel-Linear Control 36
4.1 Background 36
4.2 Small-Signal Model 37
4.2.1 Overview of the Attenuator 38
4.2.2 Attenuation Analysis 39
4.2.3 Error Analysis 43
4.3 Mismatch Analysis 47
4.4 Linearity Analysis 49
4.4.1 Chebyshev Approximation 49
4.4.2 Proposed HD3 Enhancement Technique in a Single Resistor 51
4.4.3 Proposed HD3 Enhancement Technique in VCA 55
4.5 Noise Consideration 57
4.6 Experimental Results 57
4.7 Brief Summary 61
Chapter 5 System Considerations and Design of the Analog Receiver Frontend 63
5.1 Programmable-Gain Amplifier 63
5.2 Low-Pass Filter 64
5.3 Dynamic Range Considerations in the System 66
5.4 Experimental Results 72
5.5 Brief Summary 78
Chapter 6 Conclusion 80
Bibliography 82
Publication List 86
Journal papers 86
Conference papers 87
dc.language.isoen
dc.title應用於超音波影像系統之類比接收前端設計zh_TW
dc.titleDesign of Analog Receiver Frontend for Ultrasound Imaging Applicationsen
dc.typeThesis
dc.date.schoolyear106-2
dc.description.degree博士
dc.contributor.oralexamcommittee鄭裕庭(Yu-Ting Cheng),林宗賢(Tsung-Hsien Lin),陳巍仁(Wei-Zen Chen),鄭國興(Kuo-Hsing Cheng),黃俊郎(Jiun-Lang Huang)
dc.subject.keywordUltrasound imaging system,Analog receiver frontend,LNA,VCA,LPF,zh_TW
dc.subject.keyword超音波影像系統,類比接收前端電路,低雜訊放大器,壓控衰減器,低通濾波器,en
dc.relation.page87
dc.identifier.doi10.6342/NTU201802741
dc.rights.note有償授權
dc.date.accepted2018-08-08
dc.contributor.author-college電機資訊學院zh_TW
dc.contributor.author-dept電子工程學研究所zh_TW
顯示於系所單位:電子工程學研究所

文件中的檔案:
檔案 大小格式 
ntu-107-1.pdf
  目前未授權公開取用
4.57 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved