Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 公共衛生學院
  3. 流行病學與預防醫學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/70769
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor陳秀熙(Hsiu-Hsi Chen)
dc.contributor.authorTsung-Po Chenen
dc.contributor.author陳宗伯zh_TW
dc.date.accessioned2021-06-17T04:37:49Z-
dc.date.available2018-09-04
dc.date.copyright2018-09-04
dc.date.issued2018
dc.date.submitted2018-08-08
dc.identifier.citation1. Grundy SM. Metabolic syndrome pandemic. Arterioscler Thromb Vasc Biol 2008;28:629-36.
2. Ford ES. Risks for all-cause mortality, cardiovascular disease, and diabetes associated with the metabolic syndrome: a summary of the evidence. Diabetes Care 2005;28:1769-78.
3. Hanson RL, Imperatore G, Bennett PH, Knowler WC. Components of the 'metabolic syndrome' and incidence of type 2 diabetes. Diabetes 2002;51:3120-7.
4. Balkau B, Vernay M, Mhamdi L, et al. The incidence and persistence of the NCEP (National Cholesterol Education Program) metabolic syndrome. The French D.E.S.I.R. study. Diabetes Metab 2003;29:526-32.
5. Chiu YH, Wu SC, Tseng CD, Yen MF, Chen TH. Progression of pre-hypertension, stage 1 and 2 hypertension (JNC 7): a population-based study in Keelung, Taiwan (Keelung Community-based Integrated Screening No. 9). J Hypertens 2006;24:821-8.
6. Koskinen J, Magnussen CG, Taittonen L, et al. Arterial structure and function after recovery from the metabolic syndrome: the cardiovascular risk in Young Finns Study. Circulation 2010;121:392-400.
7. Boshuizen HC, Poos MJ, van den Akker M, et al. Estimating incidence and prevalence rates of chronic diseases using disease modeling. Popul Health Metr 2017;15:13.
8. Soler JK, Okkes I, Oskam S, et al. Revisiting the concept of 'chronic disease' from the perspective of the episode of care model. Does the ratio of incidence to prevalence rate help us to define a problem as chronic? Inform Prim Care 2012;20:13-23.
9. Chen RC, Chang SF, Su CL, et al. Prevalence, incidence, and mortality of PD: a door-to-door survey in Ilan county, Taiwan. Neurology 2001;57:1679-86.
10. Dehbi HM, Francis DP. A 64,489-patient full-disclosure database of cardiovascular risk factors and events status analysed in a Bayesian framework: a unique contribution to predictive science. Int J Cardiol 2013;165:3-6.
11. Tseng CD, Yen AM, Chiu SY, Chen LS, Chen HH, Chang SH. A predictive model for risk of prehypertension and hypertension and expected benefit after population-based life-style modification (KCIS No. 24). Am J Hypertens 2012;25:171-9.
12. Eckel RH, Grundy SM, Zimmet PZ. The metabolic syndrome. Lancet 2005;365:1415-28.
13. Reaven GM. Banting lecture 1988. Role of insulin resistance in human disease. Diabetes 1988;37:1595-607.
14. Alberti KG, Zimmet PZ. Definition, diagnosis and classification of diabetes mellitus and its complications. Part 1: diagnosis and classification of diabetes mellitus provisional report of a WHO consultation. Diabet Med 1998;15:539-53.
15. Expert Panel on Detection E, Treatment of High Blood Cholesterol in A. Executive Summary of The Third Report of The National Cholesterol Education Program (NCEP) Expert Panel on Detection, Evaluation, And Treatment of High Blood Cholesterol In Adults (Adult Treatment Panel III). JAMA 2001;285:2486-97.
16. Balkau B, Charles MA. Comment on the provisional report from the WHO consultation. European Group for the Study of Insulin Resistance (EGIR). Diabet Med 1999;16:442-3.
17. Einhorn D, Reaven GM, Cobin RH, et al. American College of Endocrinology position statement on the insulin resistance syndrome. Endocr Pract 2003;9:237-52.
18. Kahn R, Buse J, Ferrannini E, Stern M, American Diabetes A, European Association for the Study of D. The metabolic syndrome: time for a critical appraisal: joint statement from the American Diabetes Association and the European Association for the Study of Diabetes. Diabetes Care 2005;28:2289-304.
19. Alberti KG, Eckel RH, Grundy SM, et al. Harmonizing the metabolic syndrome: a joint interim statement of the International Diabetes Federation Task Force on Epidemiology and Prevention; National Heart, Lung, and Blood Institute; American Heart Association; World Heart Federation; International Atherosclerosis Society; and International Association for the Study of Obesity. Circulation 2009;120:1640-5.
20. Ford ES, Giles WH, Dietz WH. Prevalence of the metabolic syndrome among US adults: findings from the third National Health and Nutrition Examination Survey. JAMA 2002;287:356-9.
21. Nolan PB, Carrick-Ranson G, Stinear JW, Reading SA, Dalleck LC. Prevalence of metabolic syndrome and metabolic syndrome components in young adults: A pooled analysis. Prev Med Rep 2017;7:211-5.
22. Ju SY, Lee JY, Kim DH. Association of metabolic syndrome and its components with all-cause and cardiovascular mortality in the elderly: A meta-analysis of prospective cohort studies. Medicine (Baltimore) 2017;96:e8491.
23. Palaniappan L, Carnethon MR, Wang Y, et al. Predictors of the incident metabolic syndrome in adults: the Insulin Resistance Atherosclerosis Study. Diabetes Care 2004;27:788-93.
24. Hadaegh F, Hasheminia M, Lotfaliany M, Mohebi R, Azizi F, Tohidi M. Incidence of metabolic syndrome over 9 years follow-up; the importance of sex differences in the role of insulin resistance and other risk factors. PLoS One 2013;8:e76304.
25. Obokata M, Negishi K, Ohyama Y, Okada H, Imai K, Kurabayashi M. A Risk Score with Additional Four Independent Factors to Predict the Incidence and Recovery from Metabolic Syndrome: Development and Validation in Large Japanese Cohorts. PLoS One 2015;10:e0133884.
26. Bradshaw PT, Reynolds KR, Wagenknecht LE, Ndumele CE, Stevens J. Incidence of components of metabolic syndrome in the metabolically healthy obese over 9 years follow-up: the Atherosclerosis Risk In Communities study. Int J Obes (Lond) 2017.
27. Orchard TJ, Temprosa M, Goldberg R, et al. The effect of metformin and intensive lifestyle intervention on the metabolic syndrome: the Diabetes Prevention Program randomized trial. Ann Intern Med 2005;142:611-9.
28. Grundy SM, Cleeman JI, Daniels SR, et al. Diagnosis and management of the metabolic syndrome: an American Heart Association/National Heart, Lung, and Blood Institute Scientific Statement. Circulation 2005;112:2735-52.
29. Carr DB, Utzschneider KM, Hull RL, et al. Intra-abdominal fat is a major determinant of the National Cholesterol Education Program Adult Treatment Panel III criteria for the metabolic syndrome. Diabetes 2004;53:2087-94.
30. Lloyd-Jones DM, Liu K, Colangelo LA, et al. Consistently stable or decreased body mass index in young adulthood and longitudinal changes in metabolic syndrome components: the Coronary Artery Risk Development in Young Adults Study. Circulation 2007;115:1004-11.
31. Pate RR, Pratt M, Blair SN, et al. Physical activity and public health. A recommendation from the Centers for Disease Control and Prevention and the American College of Sports Medicine. JAMA 1995;273:402-7.
32. Ford ES, Kohl HW, 3rd, Mokdad AH, Ajani UA. Sedentary behavior, physical activity, and the metabolic syndrome among U.S. adults. Obes Res 2005;13:608-14.
33. Chen CC, Li TC, Chang PC, et al. Association among cigarette smoking, metabolic syndrome, and its individual components: the metabolic syndrome study in Taiwan. Metabolism 2008;57:544-8.
34. Sun K, Liu J, Ning G. Active smoking and risk of metabolic syndrome: a meta-analysis of prospective studies. PLoS One 2012;7:e47791.
35. Sutherland JP, McKinley B, Eckel RH. The metabolic syndrome and inflammation. Metab Syndr Relat Disord 2004;2:82-104.
36. Jia X, Chen Q, Wu P, et al. Dynamic development of metabolic syndrome and its risk prediction in Chinese population: a longitudinal study using Markov model. Diabetol Metab Syndr 2018;10:24.
37. Hwang LC, Bai CH, You SL, Sun CA, Chen CJ. Description and prediction of the development of metabolic syndrome: a longitudinal analysis using a markov model approach. PLoS One 2013;8:e67436.
38. Czernichow S, Greenfield JR, Galan P, et al. Macrovascular and microvascular dysfunction in the metabolic syndrome. Hypertens Res 2010;33:293-7.
39. Gami AS, Witt BJ, Howard DE, et al. Metabolic syndrome and risk of incident cardiovascular events and death: a systematic review and meta-analysis of longitudinal studies. J Am Coll Cardiol 2007;49:403-14.
40. Galassi A, Reynolds K, He J. Metabolic syndrome and risk of cardiovascular disease: a meta-analysis. Am J Med 2006;119:812-9.
41. Mottillo S, Filion KB, Genest J, et al. The metabolic syndrome and cardiovascular risk a systematic review and meta-analysis. J Am Coll Cardiol 2010;56:1113-32.
42. Lorenzo C, Williams K, Hunt KJ, Haffner SM. The National Cholesterol Education Program - Adult Treatment Panel III, International Diabetes Federation, and World Health Organization definitions of the metabolic syndrome as predictors of incident cardiovascular disease and diabetes. Diabetes Care 2007;30:8-13.
43. Meigs JB, Wilson PW, Fox CS, et al. Body mass index, metabolic syndrome, and risk of type 2 diabetes or cardiovascular disease. J Clin Endocrinol Metab 2006;91:2906-12.
44. Arnlov J, Ingelsson E, Sundstrom J, Lind L. Impact of body mass index and the metabolic syndrome on the risk of cardiovascular disease and death in middle-aged men. Circulation 2010;121:230-6.
45. Ford ES, Zhao G, Li C. Pre-diabetes and the risk for cardiovascular disease: a systematic review of the evidence. J Am Coll Cardiol 2010;55:1310-7.
46. Huang Y, Su L, Cai X, et al. Association of all-cause and cardiovascular mortality with prehypertension: a meta-analysis. Am Heart J 2014;167:160-8 e1.
47. Group SR, Wright JT, Jr., Williamson JD, et al. A Randomized Trial of Intensive versus Standard Blood-Pressure Control. N Engl J Med 2015;373:2103-16.
48. Ilanne-Parikka P, Eriksson JG, Lindstrom J, et al. Effect of lifestyle intervention on the occurrence of metabolic syndrome and its components in the Finnish Diabetes Prevention Study. Diabetes Care 2008;31:805-7.
49. Knowler WC, Barrett-Connor E, Fowler SE, et al. Reduction in the incidence of type 2 diabetes with lifestyle intervention or metformin. N Engl J Med 2002;346:393-403.
50. Yamaoka K, Tango T. Effects of lifestyle modification on metabolic syndrome: a systematic review and meta-analysis. BMC Med 2012;10:138.
51. Brookmeyer R, Gray S. Methods for projecting the incidence and prevalence of chronic diseases in aging populations: application to Alzheimer's disease. Stat Med 2000;19:1481-93.
52. Liu YM, Chen SL, Yen AM, Chen HH. Individual risk prediction model for incident cardiovascular disease: a Bayesian clinical reasoning approach. Int J Cardiol 2013;167:2008-12.
53. Yen AM, Chen TH. Kinetic epidemiological model for elucidating sexual difference of hypertension (KCIS no.20). J Eval Clin Pract 2011;17:130-5.
54. Chen TH, Chiu YH, Luh DL, et al. Community-based multiple screening model: design, implementation, and analysis of 42,387 participants. Cancer 2004;100:1734-43.
55. Lu J, Wang L, Li M, et al. Metabolic Syndrome Among Adults in China: The 2010 China Noncommunicable Disease Surveillance. J Clin Endocrinol Metab 2017;102:507-15.
56. Scuteri A, Laurent S, Cucca F, et al. Metabolic syndrome across Europe: different clusters of risk factors. Eur J Prev Cardiol 2015;22:486-91.
57. Hwang LC, Bai CH, Chen CJ, Chien KL. Gender difference on the development of metabolic syndrome: a population-based study in Taiwan. Eur J Epidemiol 2007;22:899-906.
58. Morales DD, Punzalan FE, Paz-Pacheco E, et al. Metabolic syndrome in the Philippine general population: prevalence and risk for atherosclerotic cardiovascular disease and diabetes mellitus. Diab Vasc Dis Res 2008;5:36-43.
59. Ranasinghe P, Mathangasinghe Y, Jayawardena R, Hills AP, Misra A. Prevalence and trends of metabolic syndrome among adults in the asia-pacific region: a systematic review. BMC Public Health 2017;17:101.
60. Mohamud WN, Ismail AA, Sharifuddin A, et al. Prevalence of metabolic syndrome and its risk factors in adult Malaysians: results of a nationwide survey. Diabetes Res Clin Pract 2011;91:239-45.
61. Hao Z, Konta T, Takasaki S, et al. The association between microalbuminuria and metabolic syndrome in the general population in Japan: the Takahata study. Intern Med 2007;46:341-6.
62. Ang LW, Ma S, Cutter J, Chew SK, Tan CE, Tai ES. The metabolic syndrome in Chinese, Malays and Asian Indians. Factor analysis of data from the 1998 Singapore National Health Survey. Diabetes Res Clin Pract 2005;67:53-62.
63. Oh JY, Hong YS, Sung YA, Barrett-Connor E. Prevalence and factor analysis of metabolic syndrome in an urban Korean population. Diabetes Care 2004;27:2027-32.
64. Chuang SY, Chen CH, Chou P. Prevalence of metabolic syndrome in a large health check-up population in Taiwan. J Chin Med Assoc 2004;67:611-20.
65. Tan CE, Ma S, Wai D, Chew SK, Tai ES. Can we apply the National Cholesterol Education Program Adult Treatment Panel definition of the metabolic syndrome to Asians? Diabetes Care 2004;27:1182-6.
66. Arai H, Yamamoto A, Matsuzawa Y, et al. Prevalence of metabolic syndrome in the general Japanese population in 2000. J Atheroscler Thromb 2006;13:202-8.
67. Wilsgaard T, Jacobsen BK. Lifestyle factors and incident metabolic syndrome. The Tromso Study 1979-2001. Diabetes Res Clin Pract 2007;78:217-24.
68. Carr MC. The emergence of the metabolic syndrome with menopause. J Clin Endocrinol Metab 2003;88:2404-11.
69. Janssen I, Powell LH, Crawford S, Lasley B, Sutton-Tyrrell K. Menopause and the metabolic syndrome: the Study of Women's Health Across the Nation. Arch Intern Med 2008;168:1568-75.
70. Santos AC, Severo M, Barros H. Incidence and risk factors for the metabolic syndrome in an urban South European population. Prev Med 2010;50:99-105.
71. Tong J, Boyko EJ, Utzschneider KM, et al. Intra-abdominal fat accumulation predicts the development of the metabolic syndrome in non-diabetic Japanese-Americans. Diabetologia 2007;50:1156-60.
72. Kim JY, Ahn SV, Yoon JH, et al. Prospective study of serum adiponectin and incident metabolic syndrome: the ARIRANG study. Diabetes Care 2013;36:1547-53.
73. Kwon H, Kim D, Kim JS. Body Fat Distribution and the Risk of Incident Metabolic Syndrome: A Longitudinal Cohort Study. Sci Rep 2017;7:10955.
74. Hwang JH, Kam S, Shin JY, et al. Incidence of metabolic syndrome and relative importance of five components as a predictor of metabolic syndrome: 5-year follow-up study in Korea. J Korean Med Sci 2013;28:1768-73.
75. Sung KC, Seo MH, Rhee EJ, Wilson AM. Elevated fasting insulin predicts the future incidence of metabolic syndrome: a 5-year follow-up study. Cardiovasc Diabetol 2011;10:108.
76. Cameron AJ, Shaw JE, Zimmet PZ. The metabolic syndrome: prevalence in worldwide populations. Endocrinol Metab Clin North Am 2004;33:351-75, table of contents.
77. Sheu WH, Chuang SY, Lee WJ, Tsai ST, Chou P, Chen CH. Predictors of incident diabetes, metabolic syndrome in middle-aged adults: a 10-year follow-up study from Kinmen, Taiwan. Diabetes Res Clin Pract 2006;74:162-8.
78. Yang X, Tao Q, Sun F, Zhan S. The impact of socioeconomic status on the incidence of metabolic syndrome in a Taiwanese health screening population. Int J Public Health 2012;57:551-9.
79. Li Y, Yatsuya H, Iso H, Tamakoshi K, Toyoshima H. Incidence of metabolic syndrome according to combinations of lifestyle factors among middle-aged Japanese male workers. Prev Med 2010;51:118-22.
80. Carnethon MR, Loria CM, Hill JO, et al. Risk factors for the metabolic syndrome: the Coronary Artery Risk Development in Young Adults (CARDIA) study, 1985-2001. Diabetes Care 2004;27:2707-15.
81. Perreault L, Kahn SE, Christophi CA, Knowler WC, Hamman RF, Diabetes Prevention Program Research G. Regression from pre-diabetes to normal glucose regulation in the diabetes prevention program. Diabetes Care 2009;32:1583-8.
82. Mozaffarian D, Kamineni A, Prineas RJ, Siscovick DS. Metabolic syndrome and mortality in older adults: the Cardiovascular Health Study. Arch Intern Med 2008;168:969-78.
83. Akbaraly TN, Kivimaki M, Ancelin ML, et al. Metabolic syndrome, its components, and mortality in the elderly. J Clin Endocrinol Metab 2010;95:E327-32.
84. Sun DL, Wang JH, Jiang B, et al. Metabolic syndrome vs. its components for prediction of cardiovascular mortality: A cohort study in Chinese elderly adults. J Geriatr Cardiol 2012;9:123-9.
85. Zambon S, Zanoni S, Romanato G, et al. Metabolic syndrome and all-cause and cardiovascular mortality in an Italian elderly population: the Progetto Veneto Anziani (Pro.V.A.) Study. Diabetes Care 2009;32:153-9.
86. Wang J, Ruotsalainen S, Moilanen L, Lepisto P, Laakso M, Kuusisto J. The metabolic syndrome predicts cardiovascular mortality: a 13-year follow-up study in elderly non-diabetic Finns. Eur Heart J 2007;28:857-64.
87. Grundy SM, Hansen B, Smith SC, Jr., et al. Clinical management of metabolic syndrome: report of the American Heart Association/National Heart, Lung, and Blood Institute/American Diabetes Association conference on scientific issues related to management. Circulation 2004;109:551-6.
88. Bassi N, Karagodin I, Wang S, et al. Lifestyle modification for metabolic syndrome: a systematic review. Am J Med 2014;127:1242 e1-10.
89. National Task Force on the P, Treatment of O. Overweight, obesity, and health risk. Arch Intern Med 2000;160:898-904.
90. Sun K, Ren M, Liu D, Wang C, Yang C, Yan L. Alcohol consumption and risk of metabolic syndrome: a meta-analysis of prospective studies. Clin Nutr 2014;33:596-602.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/70769-
dc.description.abstract背景
代謝症候群是造成心血管疾病的主要原因,並且在臨床科學上得到很好的闡明。對於代謝症侯群在族群中的動態流行病學變化,研究則是相當有限,而對於代謝症候群的動態變化研究,有助於預防心血管疾病。
研究目的
本論文利用社區篩檢資料,藉由盛行率與發生率來預測代謝症候群之自然病史,並且使用四階段隨機過程模式,來估計使用藥物與非藥物介入後,代謝症候群之各階段轉移參數,以評估介入方法之功效。
材料及方法
本研究相關資料是取自1999年至2009年基隆社區整合式篩檢計畫,此計畫從1999年開始,每年於基隆所執行之多種疾病篩檢計畫。總共有118,087名個案納入研究分析,包括47,124名男性與70,963名女性,年齡分佈從20歲至79歲。其中,18,640名男性與35,779名女性追蹤兩次以上,總共追蹤300,329人-年,平均追蹤長度,男性為5.1年,女性為5.7年。
本研究利用貝氏方法估計盛行率與發生率之比例,並且利用四階段隨機過程,來闡明對於代謝症候群之介入方法,在預防心血管疾病上的效果。
結果
代謝症候群之盛行率/發生率之比率,代表疾病存在狀態的時間長短,在男性為3.9年,女性則為3.2年。當以年齡每10歲為分組時,盛行率/發生率之比率在男性從2.9年增加到4.7年,在女性則從2.7年增加至3.8年。兩者盛行率/發生率之最高數值,皆落在50至59歲這一年齡區間。
中等教育程度、肥胖,以及抽煙、喝酒與檳榔等習慣的人會有較高的盛行率/發生率的比值。在多變項分析中,肥胖為影響停留在代謝症候群狀態中,最顯著的因子。代謝症候群的不同階段中,產生心血管疾病的風險,年齡都是重要的因子,在尚未有代謝症候群的階段時,肥胖因子有其影響。
對於代謝症候群之自然病史的轉移參數,從正常轉移到1至2個代謝因子為0.4906,從1至2個代謝因子轉移到正常為0.3348,從1至2個代謝因子轉移到代謝症候群則為0.0478,估計降低35%的心血管疾病風險。
結論
代謝症候群之動態流行病學使用族群基礎之健康篩檢資料,此方法提供了一個有效率的量化方式,來評估介入政策對於預防心血管疾病之效果。
zh_TW
dc.description.abstractBackground: Metabolic syndrome (MetS) is a well-known major cause of cardiovascular disease and has been well elucidated in clinical science. However, information on dynamic epidemiology of MetS at population level is very limited, which precludes one from making good health planning for prevention of cardiovascular disease (CVD).
Aims: This thesis aims to make use of prevalence and incidence of MetS from empirical data to elucidate the dynamic epidemiology of MetS and use a four-state Markov process to elucidate the natural course of MetS and to project the risk of CVD before and after introduction of intervention on MetS so as to estimate the expected efficacy of each intervention.
Methods: Study subjects were participants during 1999-2009 in the Keelung Community-based Integrated Screening (KCIS) program, a multiple disease-screening program conducted annually with recruitment in the northernmost county of Taiwan since 1999. A total of 118,087 individuals (aged 30-79, extended to 20 years old later) were eligible for the following analysis, including 47,124 men and 70,963 women. Among these, 18,640 men and 35,779 women were recruited more than once, which were made up of total follow-up duration of 300,329 person years. The average follow-up times were 5.1 years in male and 5.7years in female.
Bayesian approach to estimate the ratio of prevalence to incidence was applied. This estimate together with incident cohort of MetS forms a four-state stochastic process to elucidate the efficacy of possible intervention programs specified for the prevention of CVD in relation to MetS.
Results: The ratio of prevalence to incidence for the overall group yielded the duration of natural course of MetS, approximately 3.9 years in men and 3.2 years in women. The corresponding figures for 10-years age groups ranged from 2.9 years to 4.7 years in men and 2.7 years to 3.8 years in women. The highest duration in both sexes all fell into the 50-59 age group.
Medium education level, obesity, and habits including alcohol drinking, cigarette smoking and betel chewing tend to had higher ratio of prevalence to incidence. In multivariate analysis, obesity is the most detrimental factor that influenced the duration of natural course of MetS. Age was an important factor for individuals in each MetS state developing CVD, and obesity had its influence among individuals in normal or 1-2 MetS components state for developing CVD.
Transition parameters for the natural course of MetS based on incident cohort were 49.06% from normal to 1-2 individual MetS components, 33.48% from 1-2 individual MetS components to normal, and 4.78% from 1-2 individual MetS components to MetS. If 50% of life-style modification is expected, 35% reduction of CVD-related outcome was expected.
Conclusion: Dynamic epidemiology of MetS has been elucidated by using empirical population-based health check-up data. The better use of such information provides an effective quantitative measure for the efficacy of intervention program for the prevention of CVD.
en
dc.description.provenanceMade available in DSpace on 2021-06-17T04:37:49Z (GMT). No. of bitstreams: 1
ntu-107-P05849004-1.pdf: 1262156 bytes, checksum: 36c49e0e6eb1e511e860558a92f77878 (MD5)
Previous issue date: 2018
en
dc.description.tableofcontentsChapter 1 Introduction 1
1.1 Background 1
1.1.1 Epidemiology and Dynamic Change of Metabolic Syndrome 1
1.1.2 Conventional risk factors in association with the ratio of prevalence to incidence 3
1.1.3 Bayesian Approach from Metabolic syndrome to Cardiovascular Disease 3
1.2 Aims 4
Chapter 2 Literature Review 6
2.1 Definition of Metabolic Syndrome 6
2.2 Prevalence and Incidence of Metabolic Syndrome 8
2.3 Prevalence/Incidence Ratio of Metabolic Syndrome 10
2.4 Risk Factors of Metabolic Syndrome 13
2.4.1 Lifestyle Risk Factors 13
2.4.2 Metabolic Risk Factors 15
2.5 Metabolic Syndrome and Risk of Cardiovascular Disease 17
2.6 Projection of Chronic Diseases with Progression and Risk Reduction 20
2.6.1 Projecting the incidence and prevalence of chronic diseases 20
2.6.2 Metabolic Syndrome and Bayesian Clinical Reasoning Approach 20
Chapter 3 Materials and Methods 23
3.1 Study population 23
3.1.1 KCIS program cohort group 23
3.1.2 KCIS CVD program cohort group 24
3.2 Data Collection 25
3.3 Metabolic syndrome criteria 26
3.4 Differential Equations for Prevalent and Incident Cases 27
3.5 The estimation of P/I ratio with Bayesian analysis 29
3.6 The estimation of P/I ratio with Bayesian regression analysis 31
3.7 Multistate Markov Model for Dynamic Changes of MetS for Predicting Incidence of CVD 33
3.8 Accelerated Failure Time Regression Model for Predicting Incidence of CVD 35
Chapter 4 Results 36
4.1 Basic Demographic Data of Participants 36
4.2 Prevalence, Incidence and Prevalence/Incidence Ratio of Metabolic Syndrome 38
4.2.1 Prevalence of Metabolic Syndrome 38
4.2.2 Incidence of Metabolic syndrome 38
4.2.3 Prevalence to Incidence Ratio of Metabolic syndrome 39
4.2.4 Prevalence to Incidence Ratio of Metabolic factors 39
4.2.5 Prevalence, Incidence and P/I Ratio for the Development of Metabolic Syndrome by Education, Habits, and BMI. 40
4.2.6 Predicted the Ratio of Prevalence to Incidence Ratio through Metabolic Risk Factors 41
4.2.7 Regression Analysis for the Ratio of Prevalence to Incidence 42
4.3 Relative Risk of Selective Risk Factors for CVD among Individuals with and without Metabolic Syndrome 43
4.4 Estimation of Disease Progression Rate of Metabolic Score and Cardiovascular Disease 44
4.5 Expected Efficacy of Life-style modification on Cardiovascular Disease 45
4.6 Comparison of Prevalence to Incidence Ratio from Other Region 46
Chapter 5 Discussion 47
5.1 Epidemiological Characteristic of Metabolic Syndrome 47
5.2 Clinical Implication of Prevalence to Incidence Ratio 50
5.3 Prediction of Metabolic Syndrome through Risk Factors and Ratio of Prevalence to Incidence 54
5.4 Application of Prevalence to Incidence Ratio for the Clinical Use 55
5.5 Risk Factors Adjustment in Different Metabolic Syndrome Status for Cardiovascular Disease Prevention 56
5.6 Dynamic Change of Metabolic syndrome 58
5.7 From Ratio of Prevalence to Incidence to Nature History of Metabolic Syndrome 59
5.8 Conclusion 61
dc.language.isoen
dc.subject盛行率zh_TW
dc.subject代謝症候群zh_TW
dc.subject馬可夫迴歸模型zh_TW
dc.subject心血管疾病zh_TW
dc.subject發生率zh_TW
dc.subjectCardiovascular diseaseen
dc.subjectIncidenceen
dc.subjectPrevalenceen
dc.subjectMetabolic syndromeen
dc.subjectMarkov-based Regression Modelen
dc.title代謝症候群動態流行統計分析zh_TW
dc.titleStatistical Analysis of Dynamic Epidemiology of Metabolic Syndromeen
dc.typeThesis
dc.date.schoolyear106-2
dc.description.degree碩士
dc.contributor.oralexamcommittee黃國晉(Kuo-Chin Huang),李永凌(Yung-Ling Lee)
dc.subject.keyword代謝症候群,心血管疾病,盛行率,發生率,馬可夫迴歸模型,zh_TW
dc.subject.keywordMetabolic syndrome,Cardiovascular disease,Prevalence,Incidence,Markov-based Regression Model,en
dc.relation.page95
dc.identifier.doi10.6342/NTU201802745
dc.rights.note有償授權
dc.date.accepted2018-08-08
dc.contributor.author-college公共衛生學院zh_TW
dc.contributor.author-dept流行病學與預防醫學研究所zh_TW
顯示於系所單位:流行病學與預防醫學研究所

文件中的檔案:
檔案 大小格式 
ntu-107-1.pdf
  未授權公開取用
1.23 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved