Please use this identifier to cite or link to this item:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/7074
Full metadata record
???org.dspace.app.webui.jsptag.ItemTag.dcfield??? | Value | Language |
---|---|---|
dc.contributor.advisor | 陳燕惠(Yen-Hui Chen) | |
dc.contributor.author | Hsuan-Yu Chou | en |
dc.contributor.author | 周軒宇 | zh_TW |
dc.date.accessioned | 2021-05-17T10:18:12Z | - |
dc.date.available | 2016-09-21 | |
dc.date.available | 2021-05-17T10:18:12Z | - |
dc.date.copyright | 2012-03-02 | |
dc.date.issued | 2011 | |
dc.date.submitted | 2011-09-26 | |
dc.identifier.citation | Allen, J.D., Van Dort, S.C., Buitelaar, M., van Tellingen, O., Schinkel, A.H., 2003. Mouse breast cancer resistance protein (Bcrp1/Abcg2) mediates etoposide resistance and transport, but etoposide oral availability is limited primarily by P-glycoprotein. Cancer Research 63, 1339-1344.
Ambudkar, S.V., Dey, S., Hrycyna, C.A., Ramachandra, M., Pastan, I., Gottesman, M.M., 1999. Biochemical, cellular, and pharmacological aspects of the multidrug transporter. Annual Review of Pharmacology and Toxicology 39, 361-398. Bachelder, R.E., 2004. Glycogen synthase kinase-3 is an endogenous inhibitor of Snail transcription: implications for the epithelial-mesenchymal transition. The Journal of Cell Biology 168, 29-33. Baldwin, A.S., 2001. Control of oncogenesis and cancer therapy resistance by the transcription factor NF-kappaB. Journal of Clinical Investigation 107, 241-246. Batlle, E., Sancho, E., Franci, C., Dominguez, D., Monfar, M., Baulida, J., Garcia De Herreros, A., 2000. The transcription factor snail is a repressor of E-cadherin gene expression in epithelial tumour cells. Nature Cell Biology 2, 84-89. Blanco, M.J., Moreno-Bueno, G., Sarrio, D., Locascio, A., Cano, A., Palacios, J., Nieto, M.A., 2002. Correlation of Snail expression with histological grade and lymph node status in breast carcinomas. Oncogene 21, 3241-3246. Bolos, V., 2002. The transcription factor Slug represses E-cadherin expression and induces epithelial to mesenchymal transitions: a comparison with Snail and E47 repressors. Journal of Cell Science 116, 499-511. Calcagno, A.M., Salcido, C.D., Gillet, J.P., Wu, C.P., Fostel, J.M., Mumau, M.D., Gottesman, M.M., Varticovski, L., Ambudkar, S.V., 2010. Prolonged drug selection of breast cancer cells and enrichment of cancer stem cell characteristics. JNCI Journal of the National Cancer Institute 102, 1637-1652. Cano, A., Perez-Moreno, M.A., Rodrigo, I., Locascio, A., Blanco, M.J., del Barrio, M.G., Portillo, F., Nieto, M.A., 2000. The transcription factor snail controls epithelial-mesenchymal transitions by repressing E-cadherin expression. Nature Cell Biology 2, 76-83. Casas, E., Kim, J., Bendesky, A., Ohno-Machado, L., Wolfe, C.J., Yang, J., 2011. Snail2 is an essential mediator of twist1-induced epithelial mesenchymal transition and metastasis. Cancer Research 71, 245-254. Chang, T.H., Tsai, M.F., Su, K.Y., Wu, S.G., Huang, C.P., Yu, S.L., Yu, Y.L., Lan, C.C., Yang, C.H., Lin, S.B., Wu, C.P., Shih, J.Y., Yang, P.C., 2011. Slug confers resistance to the epidermal growth factor receptor tyrosine kinase inhibitor. American Journal of Respiratory and Critical Care Medicine 183, 1071-1079. Chen, J., Yusuf, I., Andersen, H.M., Fruman, D.A., 2006. FOXO transcription factors cooperate with delta EF1 to activate growth suppressive genes in B lymphocytes. The Journal of Immunology 176, 2711-2721. Cheng, G.Z., Chan, J., Wang, Q., Zhang, W., Sun, C.D., Wang, L.H., 2007. Twist transcriptionally up-regulates AKT2 in breast cancer cells leading to increased migration, invasion, and resistance to paclitaxel. Cancer Research 67, 1979-1987. Chu, X.Y., Suzuki, H., Ueda, K., Kato, Y., Akiyama, S., Sugiyama, Y., 1999. Active efflux of CPT-11 and its metabolites in human KB-derived cell lines. Journal of Pharmacology and Experimental Therapeutics 288, 735-741. Ciruna, B., Rossant, J., 2001. FGF signaling regulates mesoderm cell fate specification and morphogenetic movement at the primitive streak. Developmental Cell 1, 37-49. Cochrane, D.R., Spoelstra, N.S., Howe, E.N., Nordeen, S.K., Richer, J.K., 2009. MicroRNA-200c mitigates invasiveness and restores sensitivity to microtubule-targeting chemotherapeutic agents. Molecular Cancer Therapeutics 8, 1055-1066. Come, C., Magnino, F., Bibeau, F., De Santa Barbara, P., Becker, K.F., Theillet, C., Savagner, P., 2006. Snail and slug play distinct roles during breast carcinoma progression. Clinical Cancer Research 12, 5395-5402. Comijn, J., Berx, G., Vermassen, P., Verschueren, K., van Grunsven, L., Bruyneel, E., Mareel, M., Huylebroeck, D., van Roy, F., 2001. The two-handed E box binding zinc finger protein SIP1 downregulates E-cadherin and induces invasion. Molecular Cell 7, 1267-1278. De Calisto, J., 2005. Essential role of non-canonical Wnt signalling in neural crest migration. Development 132, 2587-2597. Dean, M., Fojo, T., Bates, S., 2005. Tumour stem cells and drug resistance. Nature Reviews Cancer 5, 275-284. Deveraux, Q.L., Reed, J.C., 1999. IAP family proteins─suppressors of apoptosis. Genes and Development 13, 239-252. Eger, A., Aigner, K., Sonderegger, S., Dampier, B., Oehler, S., Schreiber, M., Berx, G., Cano, A., Beug, H., Foisner, R., 2005. DeltaEF1 is a transcriptional repressor of E-cadherin and regulates epithelial plasticity in breast cancer cells. Oncogene 24, 2375-2385. El-Deiry, W.S., 2003. The role of p53 in chemosensitivity and radiosensitivity. Oncogene 22, 7486-7495. Elloul, S., Bukholt Elstrand, M., Nesland, J.M., Tropé, C.G., Kvalheim, G., Goldberg, I., Reich, R., Davidson, B., 2005. Snail, Slug, and Smad-interacting protein 1 as novel parameters of disease aggressiveness in metastatic ovarian and breast carcinoma. Cancer 103, 1631-1643. Elloul, S., Silins, I., Tropé, C.G., Benshushan, A., Davidson, B., Reich, R., 2006. Expression of E-cadherin transcriptional regulators in ovarian carcinoma. Virchows Archiv 449, 520-528. Fedier, A., Schwarz, V.A., Walt, H., Carpini, R.D., Haller, U., Fink, D., 2001. Resistance to topoisomerase poisons due to loss of DNA mismatch repair. International Journal of Cancer 93, 571-576. Gonzalez-Sancho, J.M., Larriba, M.J., Ordonez-Moran, P., Palmer, H.G., Munoz, A., 2006. Effects of 1alpha,25-dihydroxyvitamin D3 in human colon cancer cells. Anticancer Research 26, 2669-2681. Gottesman, M.M., Fojo, T., Bates, S.E., 2002. Multidrug resistance in cancer: role of ATP-dependent transporters. Nature Reviews Cancer 2, 48-58. Grille, S.J., Bellacosa, A., Upson, J., Klein-Szanto, A.J., van Roy, F., Lee-Kwon, W., Donowitz, M., Tsichlis, P.N., Larue, L., 2003. The protein kinase Akt induces epithelial mesenchymal transition and promotes enhanced motility and invasiveness of squamous cell carcinoma lines. Cancer Research 63, 2172-2178. Gros, J., Manceau, M., Thomé, V., Marcelle, C., 2005. A common somitic origin for embryonic muscle progenitors and satellite cells. Nature 435, 954-958. Guaita, S., 2002. Snail induction of epithelial to mesenchymal transition in tumor cells is accompanied by MUC1 repression and ZEB1 expression. Journal of Biological Chemistry 277, 39209-39216. Hainaut, P., Soussi, T., Shomer, B., Hollstein, M., Greenblatt, M., Hovig, E., Harris, C.C., Montesano, R., 1997. Database of p53 gene somatic mutations in human tumors and cell lines: updated compilation and future prospects. Nucleic Acids Research 25, 151-157. Hajra, K.M., Chen, D.Y., Fearon, E.R., 2002. The SLUG zinc-finger protein represses E-cadherin in breast cancer. Cancer Research 62, 1613-1618. Hansen, L.T., Lundin, C., Spang-Thomsen, M., Petersen, L.N.r.r., Helleday, T., 2003. The role of RAD51 in etoposide (VP16) resistance in small cell lung cancer. International Journal of Cancer 105, 472-479. Haupt, S., Alsheich-Bartok, O., Haupt, Y., 2006. Clues from worms: a Slug at Puma promotes the survival of blood progenitors. Cell Death and Differentiation 13, 913-915. Hiscox, S., Jiang, W.G., Obermeier, K., Taylor, K., Morgan, L., Burmi, R., Barrow, D., Nicholson, R.I., 2006. Tamoxifen resistance in MCF7 cells promotes EMT-like behaviour and involves modulation of beta-catenin phosphorylation. International Journal of Cancer 118, 290-301. Hoek, K., 2004. Expression profiling reveals novel pathways in the transformation of melanocytes to melanomas. Cancer Research 64, 5270-5282. Huber, M.A., 2004. NF-κB is essential for epithelial-mesenchymal transition and metastasis in a model of breast cancer progression. Journal of Clinical Investigation 114, 569-581. Imamichi, Y., König, A., Gress, T., Menke, A., 2006. Collagen type I-induced Smad-interacting protein 1 expression downregulates E-cadherin in pancreatic cancer. Oncogene 26, 2381-2385. Inoue, A., Seidel, M.G., Wu, W., Kamizono, S., Ferrando, A.A., Bronson, R.T., Iwasaki, H., Akashi, K., Morimoto, A., Hitzler, J.K., Pestina, T.I., Jackson, C.W., Tanaka, R., Chong, M.J., McKinnon, P.J., Inukai, T., Grosveld, G.C., Look, A.T., 2002. Slug, a highly conserved zinc finger transcriptional repressor, protects hematopoietic progenitor cells from radiation-induced apoptosis in vivo. Cancer Cell 2, 279-288. Işeri, Ö.D., Kars, M.D., Arpaci, F., Atalay, C., Pak, I., Gündüz, U., 2011. Drug resistant MCF-7 cells exhibit epithelial-mesenchymal transition gene expression pattern. Biomedicine and Pharmacotherapy 65, 40-45. Janda, E., 2002. Ras and TGFbeta cooperatively regulate epithelial cell plasticity and metastasis: dissection of Ras signaling pathways. The Journal of Cell Biology 156, 299-314. Johansson, K.A., Grapin-Botton, A., 2002. Development and diseases of the pancreas. Clinical Genetics 62, 14-23. Julien, S., Puig, I., Caretti, E., Bonaventure, J., Nelles, L., van Roy, F., Dargemont, C., de Herreros, A.G., Bellacosa, A., Larue, L., 2007. Activation of NF-κB by Akt upregulates Snail expression and induces epithelium mesenchyme transition. Oncogene 26, 7445-7456. Kajita, M., McClinic, K.N., Wade, P.A., 2004. Aberrant expression of the transcription factors Snail and Slug alters the response to genotoxic stress. Molecular and Cellular Biology 24, 7559-7566. Kajiyama, H., Shibata, K., Terauchi, M., Yamashita, M., Ino, K., Nawa, A., Kikkawa, F., 2007. Chemoresistance to paclitaxel induces epithelial-mesenchymal transition and enhances metastatic potential for epithelial ovarian carcinoma cells. International Journal of Oncology 31, 277-283. Kudo-Saito, C., Shirako, H., Takeuchi, T., Kawakami, Y., 2009. Cancer metastasis is accelerated through immunosuppression during Snail-induced EMT of cancer cells. Cancer Cell 15, 195-206. Kurrey, N.K., Jalgaonkar, S.P., Joglekar, A.V., Ghanate, A.D., Chaskar, P.D., Doiphode, R.Y., Bapat, S.A., 2009. Snail and Slug mediate radioresistance and chemoresistance by antagonizing p53-mediated apoptosis and acquiring a stem-like phenotype in ovarian cancer cells. Stem Cells 27, 2059-2068. Kwok, W.K., 2005. Up-regulation of TWIST in prostate cancer and its implication as a therapeutic target. Cancer Research 65, 5153-5162. Kyo, S., Sakaguchi, J., Ohno, S., Mizumoto, Y., Maida, Y., Hashimoto, M., Nakamura, M., Takakura, M., Nakajima, M., Masutomi, K., 2006. High Twist expression is involved in infiltrative endometrial cancer and affects patient survival. Human Pathology 37, 431-438. Lester, R.D., Jo, M., Montel, V., Takimoto, S., Gonias, S.L., 2007. uPAR induces epithelial mesenchymal transition in hypoxic breast cancer cells. The Journal of Cell Biology 178, 425-436. Li, Q.Q., Xu, J.D., Wang, W.J., Cao, X.X., Chen, Q., Tang, F., Chen, Z.Q., Liu, X.P., Xu, Z.D., 2009. Twist1-mediated adriamycin-induced epithelial-mesenchymal transition relates to multidrug resistance and invasive potential in breast cancer cells. Clinical Cancer Research 15, 2657-2665. Lowe, S.W., Ruley, H.E., Jacks, T., Housman, D.E., 1993. p53-dependent apoptosis modulates the cytotoxicity of anticancer agents. Cell 74, 957-967. Martin, T.A., Goyal, A., Watkins, G., Jiang, W.G., 2005. Expression of the transcription factors Snail, Slug, and Twist and their clinical significance in human breast cancer. Annals of Surgical Oncology 12, 488-496. Mayor, R., Guerrero, N., Martinez, C., 1997. Role of FGF and noggin in neural crest induction. Developmental Biology 189, 1-12. Mayor, R., Morgan, R., Sargent, M.G., 1995. Induction of the prospective neural crest of Xenopus. Development 121, 767-777. Mironchik, Y., 2005. Twist overexpression induces in vivo angiogenesis and correlates with chromosomal instability in breast cancer. Cancer Research 65, 10801-10809. Mittal, M.K., Singh, K., Misra, S., Chaudhuri, G., 2011. SLUG-induced elevation of D1 cyclin in breast cancer cells through the inhibition of its ubiquitination. The Journal of Biological Chemistry 286, 469-479. Moody, S.E., Perez, D., Pan, T.C., Sarkisian, C.J., Portocarrero, C.P., Sterner, C.J., Notorfrancesco, K.L., Cardiff, R.D., Chodosh, L.A., 2005. The transcriptional repressor Snail promotes mammary tumor recurrence. Cancer Cell 8, 197-209. Muschen, M., Warskulat, U., Beckmann, M.W., 2000. Defining CD95 as a tumor suppressor gene. Journal of Molecular Medicine 78, 312-325. Nakajima, Y., Yamagishi, T., Hokari, S., Nakamura, H., 2000. Mechanisms involved in valvuloseptal endocardial cushion formation in early cardiogenesis: roles of transforming growth factor (TGF)-beta and bone morphogenetic protein (BMP). The Anatomical Record 258, 119-127. Niessen, K., Fu, Y., Chang, L., Hoodless, P.A., McFadden, D., Karsan, A., 2008. Slug is a direct Notch target required for initiation of cardiac cushion cellularization. The Journal of Cell Biology 182, 315-325. Oft, M., Heider, K.H., Beug, H., 1998. TGFbeta signaling is necessary for carcinoma cell invasiveness and metastasis. Current Biology 8, 1243-1252. Ogretmen, B., Safa, A.R., 1997. Expression of the mutated p53 tumor suppressor protein and its molecular and biochemical characterization in multidrug resistant MCF-7/Adr human breast cancer cells. Oncogene 14, 499-506. Pálmer, H.G., Larriba, M.J., García, J.M., Ordóñez-Morán, P., Peña, C., Peiró, S., Puig, I., Rodríguez, R., de la Fuente, R., Bernad, A., Pollán, M., Bonilla, F., Gamallo, C., de Herreros, A.G., Muñoz, A., 2004. The transcription factor SNAIL represses vitamin D receptor expression and responsiveness in human colon cancer. Nature Medicine 10, 917-919. Pérez-Losada, J., Sánchez-Martín, M., Pérez-Caro, M., Pérez-Mancera, P.A., Sánchez-García, I., 2003. The radioresistance biological function of the SCF/kit signaling pathway is mediated by the zinc-finger transcription factor Slug. Oncogene 22, 4205-4211. Peña, C., García, J.M., García, V., Silva, J., Domínguez, G., Rodríguez, R., Maximiano, C., García de Herreros, A., Muñoz, A., Bonilla, F., 2006. The expression levels of the transcriptional regulators p300 and CtBP modulate the correlations between SNAIL, ZEB1, E-cadherin and vitamin D receptor in human colon carcinomas. International Journal of Cancer 119, 2098-2104. Peinado, H., 2003. Transforming growth factor beta-1 induces Snail transcription factor in epithelial cell lines: mechanisms for epithelial mesenchymal transitions. Journal of Biological Chemistry 278, 21113-21123. Pena, C., 2005. E-cadherin and vitamin D receptor regulation by SNAIL and ZEB1 in colon cancer: clinicopathological correlations. Human Molecular Genetics 14, 3361-3370. Polakis, P., 2000. Wnt signaling and cancer. Genes and Development 14, 1837-1851. Polyak, K., Weinberg, R.A., 2009. Transitions between epithelial and mesenchymal states: acquisition of malignant and stem cell traits. Nature Reviews Cancer 9, 265-273. Remacle, J.E., Kraft, H., Lerchner, W., Wuytens, G., Collart, C., Verschueren, K., Smith, J.C., Huylebroeck, D., 1999. New mode of DNA binding of multi-zinc finger transcription factors: deltaEF1 family members bind with two hands to two target sites. The EMBO Journal 18, 5073-5084. Roberg, K., Jonsson, A.C., Grénman, R., Norberg-Spaak, L., 2007. Radiotherapy response in oral squamous carcinoma cell lines: Evaluation of apoptotic proteins as prognostic factors. Head and Neck 29, 325-334. Rosivatz, E., Becker, I., Specht, K., Fricke, E., Luber, B., Busch, R., Höfler, H., Becker, K.F., 2002. Differential expression of the epithelial-mesenchymal transition regulators Snail, SIP1, and Twist in gastric cancer. The American Journal of Pathology 161, 1881-1891. Rosivatz, E., Becker, K.F., Kremmer, E., Schott, C., Blechschmidt, K., Höfler, H., Sarbia, M., 2005. Expression and nuclear localization of Snail, an E-cadherin repressor, in adenocarcinomas of the upper gastrointestinal tract. Virchows Archiv 448, 277-287. Roy, H.K., Smyrk, T.C., Koetsier, J., Victor, T.A., Wali, R.K., 2005. The Transcriptional repressor SNAIL is overexpressed in human colon cancer. Digestive Diseases and Sciences 50, 42-46. Sauka-Spengler, T., Bronner-Fraser, M., 2008. A gene regulatory network orchestrates neural crest formation. Nature Reviews Molecular Cell Biology 9, 557-568. Schuetz, E.G., Beck, W.T., Schuetz, J.D., 1996. Modulators and substrates of P-glycoprotein and cytochrome P4503A coordinately up-regulate these proteins in human colon carcinoma cells. Molecular Pharmacology 49, 311-318. Sechrist, J., Nieto, M.A., Zamanian, R.T., Bronner-Fraser, M., 1995. Regulative response of the cranial neural tube after neural fold ablation: spatiotemporal nature of neural crest regeneration and up-regulation of Slug. Development 121, 4103-4115. Shen, D., Pastan, I., Gottesman, M.M., 1998. Cross-resistance to methotrexate and metals in human cisplatin-resistant cell lines results from a pleiotropic defect in accumulation of these compounds associated with reduced plasma membrane binding proteins. Cancer Research 58, 268-275. Shen, D.W., Goldenberg, S., Pastan, I., Gottesman, M.M., 2000. Decreased accumulation of [14C]carboplatin in human cisplatin-resistant cells results from reduced energy-dependent uptake. Journal of Cellular Physiology 183, 108-116. Shin, M.S., Kim, H.S., Lee, S.H., Park, W.S., Kim, S.Y., Park, J.Y., Lee, J.H., Lee, S.K., Lee, S.N., Jung, S.S., Han, J.Y., Kim, H., Lee, J.Y., Yoo, N.J., 2001. Mutations of tumor necrosis factor-related apoptosis-inducing ligand receptor 1 (TRAIL-R1) and receptor 2 (TRAIL-R2) genes in metastatic breast cancers. Cancer Research 61, 4942-4946. Shioiri, M., Shida, T., Koda, K., Oda, K., Seike, K., Nishimura, M., Takano, S., Miyazaki, M., 2006. Slug expression is an independent prognostic parameter for poor survival in colorectal carcinoma patients. British Journal of Cancer 94, 1816-1822. Sigal, A., Rotter, V., 2000. Oncogenic mutations of the p53 tumor suppressor: the demons of the guardian of the genome. Cancer Research 60, 6788-6793. Soengas, M.S., Capodieci, P., Polsky, D., Mora, J., Esteller, M., Opitz-Araya, X., McCombie, R., Herman, J.G., Gerald, W.L., Lazebnik, Y.A., Cordon-Cardo, C., Lowe, S.W., 2001. Inactivation of the apoptosis effector Apaf-1 in malignant melanoma. Nature 409, 207-211. Spoelstra, N.S., 2006. The transcription factor ZEB1 is aberrantly expressed in aggressive uterine cancers. Cancer Research 66, 3893-3902. Stavrovskaya, A.A., Stromskaya, T.P., 2008. Transport proteins of the ABC family and multidrug resistance of tumor cells. Biochemistry (Moscow) 73, 592-604. Strippoli, R., Benedicto, I., Perez Lozano, M.L., Cerezo, A., Lopez-Cabrera, M., del Pozo, M.A., 2008. Epithelial-to-mesenchymal transition of peritoneal mesothelial cells is regulated by an ERK/NF-κB/Snail1 pathway. Disease Models and Mechanisms 1, 264-274. Synold, T.W., Dussault, I., Forman, B.M., 2001. The orphan nuclear receptor SXR coordinately regulates drug metabolism and efflux. Nature Medicine 7, 584-590. Tanimizu, N., Miyajima, A., 2007. Molecular mechanism of liver development and regeneration. International Society for Cell Biology 259, 1-48. Teitz, T., Wei, T., Valentine, M.B., Vanin, E.F., Grenet, J., Valentine, V.A., Behm, F.G., Look, A.T., Lahti, J.M., Kidd, V.J., 2000. Caspase 8 is deleted or silenced preferentially in childhood neuroblastomas with amplification of MYCN. Nature Medicine 6, 529-535. Thiery, J.P., 2002. Epithelial-mesenchymal transitions in tumour progression. Nature Reviews Cancer 2, 442-454. Timmerman, L.A., 2004. Notch promotes epithelial-mesenchymal transition during cardiac development and oncogenic transformation. Genes and Development 18, 99-115. Tribulo, C., Aybar, M.J., Sanchez, S.S., Mayor, R., 2004. A balance between the anti-apoptotic activity of Slug and the apoptotic activity of msx1 is required for the proper development of the neural crest. Developmental Biology 275, 325-342. Vitali, R., Mancini, C., Cesi, V., Tanno, B., Mancuso, M., Bossi, G., Zhang, Y., Martinez, R.V., Calabretta, B., Dominici, C., Raschella, G., 2008. Slug (SNAI2) down-regulation by RNA interference facilitates apoptosis and inhibits invasive growth in neuroblastoma preclinical models. Clinical Cancer Research 14, 4622-4630. Vousden, K.H., Lu, X., 2002. Live or let die: the cell's response to p53. Nature Reviews Cancer 2, 594-604. Wang, X., Belguise, K., Kersual, N., Kirsch, K.H., Mineva, N.D., Galtier, F., Chalbos, D., Sonenshein, G.E., 2007. Oestrogen signalling inhibits invasive phenotype by repressing RelB and its target BCL2. Nature Cell Biology 9, 470-478. Wang, Z., Li, Y., Ahmad, A., Banerjee, S., Azmi, A.S., Kong, D., Sarkar, F.H., 2010. Pancreatic cancer: understanding and overcoming chemoresistance. Nature Reviews Gastroenterology and Hepatology 8, 27-33. Wu, J., Yang, J., Klein, P.S., 2005a. Neural crest induction by the canonical Wnt pathway can be dissociated from anterior-posterior neural patterning in Xenopus. Developmental Biology 279, 220-232. Wu, W.S., Heinrichs, S., Xu, D., Garrison, S.P., Zambetti, G.P., Adams, J.M., Look, A.T., 2005b. Slug antagonizes p53-mediated apoptosis of hematopoietic progenitors by repressing puma. Cell 123, 641-653. Wu, Y., Deng, J., Rychahou, P.G., Qiu, S., Evers, B.M., Zhou, B.P., 2009. Stabilization of Snail by NF-κB is required for inflammation-induced cell migration and invasion. Cancer Cell 15, 416-428. Yang, A.D., 2006. Chronic oxaliplatin resistance induces epithelial-to-mesenchymal transition in colorectal cancer cell lines. Clinical Cancer Research 12, 4147-4153. Yang, G.S., Wang, Y., Wang, P., Chen, Z.D., 2007. Expression of oestrogen receptor-alpha and oestrogen receptor-beta in prostate cancer. Chinese Medical Journal 120, 1611-1615. Yang, J., Mani, S.A., Donaher, J.L., Ramaswamy, S., Itzykson, R.A., Come, C., Savagner, P., Gitelman, I., Richardson, A., Weinberg, R.A., 2004. Twist, a master regulator of morphogenesis, plays an essential role in tumor metastasis. Cell 117, 927-939. Yang, M.H., Wu, M.Z., Chiou, S.H., Chen, P.M., Chang, S.Y., Liu, C.J., Teng, S.C., Wu, K.J., 2008. Direct regulation of TWIST by HIF-1α promotes metastasis. Nature Cell Biology 10, 295-305. Yu, S.T., Chen, T.M., Tseng, S.Y., Chen, Y.H., 2007. Tryptanthrin inhibits MDR1 and reverses doxorubicin resistance in breast cancer cells. Biochemical and Biophysical Research Communications 358, 79-84. Yuen, H.F., Chan, Y.P., Wong, M.L., Kwok, W.K., Chan, K.K., Lee, P.Y., Srivastava, G., Law, S.Y.K., Wong, Y.C., Wang, X., Chan, K.W., 2006. Upregulation of Twist in oesophageal squamous cell carcinoma is associated with neoplastic transformation and distant metastasis. Journal of Clinical Pathology 60, 510-514. Zavadil, J., Bottinger, E.P., 2005. TGF-beta and epithelial-to-mesenchymal transitions. Oncogene 24, 5764-5774. Zhong, X., Safa, A.R., 2007. Phosphorylation of RNA helicase A by DNA-dependent protein kinase is indispensable for expression of the MDR1 gene product P-glycoprotein in multidrug-resistant human leukemia cells. Biochemistry 46, 5766-5775. Zhou, B.P., Deng, J., Xia, W., Xu, J., Li, Y.M., Gunduz, M., Hung, M.C., 2004. Dual regulation of Snail by GSK-3β-mediated phosphorylation in control of epithelial-mesenchymal transition. Nature Cell Biology 6, 931-940. Zoltan-Jones, A., 2003. Elevated hyaluronan production induces mesenchymal and transformed properties in epithelial cells. Journal of Biological Chemistry 278, 45801-45810. | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/7074 | - |
dc.description.abstract | 目的:腫瘤細胞對於結構不同的化療藥物具有抗藥性,稱為多重抗藥性(multidrug resistance)。近來,上皮-間葉轉化(epithelial-mesenchymal transition)在研究多重抗藥性的領域中漸被重視。因此,本研究主要的目的是探討上皮-間葉轉化調控因子Slug對於doxorubicin引起細胞的抗藥性所扮演的角色。
方法:透過顯微鏡與免疫螢光染色分別觀察MCF-7/WT與MCF-7/ADR型態差異與上皮-間葉轉化的標記蛋白。藉由即時定量-聚合連鎖酶反應法和西方墨點法分析對doxorubicin敏感的MCF-7/WT與具doxorubicin抗藥性的MCF-7/ADR中上皮-間葉轉化標記蛋白包括E-cadherin, N-cadherin與vimentin與其主要調控因子如Snail, Slug and ZEB1的表現量。抑制Slug表現則用以探討上皮-間葉轉化調控因子對於doxorubicin抗性的調控角色,並透過流式細胞儀、caspase-3/7測定與caspase-8測定探討Slug siRNA引起的細胞凋亡。同樣地,藉由即時定量-聚合連鎖酶反應法分析抑制Slug後引起細胞凋亡相關分子如caspase-6, DFF40, bcl-2 family 及p53的基因表現。 結果:間葉細胞標記蛋白N-cadherin與vimentin的表現在MCF-7/ADR中相對高於MCF-7/WT,但是上皮細胞標記蛋白E-cadherin在MCF-7/ADR細胞中則較MCF-7/WT細胞中的表現量低。相較於MCF-7/WT,Slug在MCF-7/ADR中的表現則顯著增加(P value=7.21×10-6)。抑制MCF-7/ADR中Slug的表現能夠促進doxorubicin引起的細胞凋亡,包括cleaved PARP與sub-G1細胞族群的增加。且抑制Slug能增加Bad與p53的表現,降低Bcl-2的表現,以及活化caspase-3/7。 結論:在MCF-7/ADR中表現上皮-間葉轉化的現象可能與多重抗藥性的有關,上皮-間葉轉化調控因子Slug具對抗doxorubicin引起的細胞凋亡的能力,於乳癌治療中或許能夠當作是doxorubicin引起的抗藥性的治療標的。 | zh_TW |
dc.description.abstract | Purpose: The resistance of tumor cells to a variety of structurally different chemotherapeutics is termed multidrug resistance (MDR). Recently, epithelial-mesenchymal transition (EMT) has been shown to be associated with multidrug resistance. The aim of the present study is to examine the role of EMT regulator Slug in cells resistant to doxorubicin treatment.
Methods: Differences in morphology and EMT markers between MCF-7/WT and MCF-7/ADR were observed by microscopy and immunofluorescence staining, respectively. The expression levels of EMT markers (i.e. E-cadherin, N-cadherin and vimentin) and EMT key regulators (i.e. Snail, Slug and ZEB1) in MCF-7/WT and MCF-7/ADR were determined using quantitative real-time polymerase chain reaction and Western blot analysis. Slug silencing was performed to investigate the effects of Slug on doxorubicin-induced resistance. Apoptosis upon Slug siRNA treatment was evaluated by flow cytometry, caspase-3/7 assay and caspase-8 assay. The gene expressions of apoptosis-related molecules (i.e. caspase-6, DFF40, bcl-2 family and p53) caused by Slug silencing were analyzed by quantitative real-time polymerase chain reaction. Results: The expressions of mesenchymal markers N-cadherin and vimentin were higher in MCF-7/ADR than that in MCF-7/WT, but the expression of epithelial marker E-cadherin decreased in MCF-7/ADR, compared to MCF-7/WT. Slug expression significantly increased in MCF-7/ADR (P value=7.21×10-6). Silencing of Slug in MCF-7/ADR enhanced doxorubicin-induced apoptosis such as high levels of cleaved PARP protein, sub-G1 population, Bad and p53 expressions, and caspase-3/7 activity and lower level of Bcl-2. Conclusion: EMT was observed in MCF-7/ADR cells indicating the association of EMT and multidrug resistance. The EMT regulator Slug may be against doxorubicin-induced apoptosis and turns out as a potential therapeutic target for treating doxorubicin-induced multidrug resistance in cancers. | en |
dc.description.provenance | Made available in DSpace on 2021-05-17T10:18:12Z (GMT). No. of bitstreams: 1 ntu-100-R98423008-1.pdf: 4450032 bytes, checksum: fc6c86671d907c39c451322ef51be42e (MD5) Previous issue date: 2011 | en |
dc.description.tableofcontents | 口試委員會審定書 i
誌謝 ii 中文摘要 iii 英文摘要 v 目錄 vii 圖目錄 x 表目錄 xii 縮寫對照表 xiii 第一章 緒論 1 1.1 多重抗藥性 1 1.2 上皮-間葉轉化 4 1.21 上皮-間葉轉化關鍵調控因子 5 1.22 上皮-間葉轉化在癌症中的角色 7 1.23 上皮-間葉轉化與多重抗藥性的關係 9 1.3 研究動機及目的 10 第二章 材料及研究方法 14 2.1 實驗儀器 14 2.2 細胞株的培養 15 2.3 免疫螢光染色 (Immunofluorescence staining) 16 2.4 反轉錄-聚合酶連鎖反應法 (Reverse transcription-PCR) 17 2.5 即時定量-聚合酶連鎖反應法 (Real-time PCR) 20 2.6 西方墨點法 (Western blot) 22 2.7 siRNA轉染試驗 (siRNA transfection) 26 2.8 Propidium iodide 染色測定 27 2.9 Caspase-Glo 3/7 測定 27 2.10 Caspase-8 測定 28 2.11 統計檢定 29 第三章 研究結果 33 3.1 MCF-7/WT與MCF-7/ADR呈現不同的細胞型態與上皮-間葉轉化標記蛋白 33 3.2 MCF-7/ADR呈現上皮-間葉轉化特性 33 3.3 在MCF-7/ADR細胞中上皮-間葉轉化調控因子過度表現 34 3.4 Slug siRNA抑制Slug mRNA與蛋白質表現 34 3.5 抑制Slug促進doxorubicin引發MCF-7/ADR的細胞凋亡 34 3.6 抑制Slug增加Bad與p53的基因表現量並降低Bcl-2基因表現量 36 第四章 討論 53 第五章 結論 58 第六章 參考文獻 59 | |
dc.language.iso | zh-TW | |
dc.title | 抑制上皮-間葉轉化調控因子Slug促進doxorubicin在MCF-7/ADR抗藥性細胞株中誘導的細胞凋亡 | zh_TW |
dc.title | Inhibition of epithelial-mesenchymal transition regulator Slug enhances doxorubicin-induced apoptosis in drug resistant MCF-7/ADR cells | en |
dc.type | Thesis | |
dc.date.schoolyear | 100-1 | |
dc.description.degree | 碩士 | |
dc.contributor.oralexamcommittee | 許麗卿(Lih-Ching Hsu),楊家榮(Chia-Ron Yang) | |
dc.subject.keyword | 細胞凋亡,doxorubicin,上皮-間葉轉化,MCF-7/ADR,多重抗藥性,Slug,p53, | zh_TW |
dc.subject.keyword | apoptosis,doxorubicin,epithelial-mesenchymal transition,MCF-7/ADR,multidrug resistance,Slug,p53, | en |
dc.relation.page | 73 | |
dc.rights.note | 同意授權(全球公開) | |
dc.date.accepted | 2011-09-28 | |
dc.contributor.author-college | 醫學院 | zh_TW |
dc.contributor.author-dept | 藥學研究所 | zh_TW |
Appears in Collections: | 藥學系 |
Files in This Item:
File | Size | Format | |
---|---|---|---|
ntu-100-1.pdf | 4.35 MB | Adobe PDF | View/Open |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.