Please use this identifier to cite or link to this item:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/7073
Full metadata record
???org.dspace.app.webui.jsptag.ItemTag.dcfield??? | Value | Language |
---|---|---|
dc.contributor.advisor | 陳燕惠(Yen-Hui Chen) | |
dc.contributor.author | Hui-Ting Hsiao | en |
dc.contributor.author | 蕭惠婷 | zh_TW |
dc.date.accessioned | 2021-05-17T10:18:12Z | - |
dc.date.available | 2016-09-21 | |
dc.date.available | 2021-05-17T10:18:12Z | - |
dc.date.copyright | 2012-03-02 | |
dc.date.issued | 2011 | |
dc.date.submitted | 2011-09-28 | |
dc.identifier.citation | 第七章、參考文獻
[1]M.M. Gottesman, T. Fojo, S.E. Bates, Multidrug resistance in cancer: role of ATP-dependent transporters. Nature Reviews. Cancer 2 (2002) 48-58. [2]J.P. Gillet, M.M. Gottesman, Mechanisms of multidrug resistance in cancer. Methods Molecular Biology 596 (2010) 47-76. [3]Y.Y. Liu, T.Y. Han, A.E. Giuliano, M.C. Cabot, Ceramide glycosylation potentiates cellular multidrug resistance. The FASEB Journal : official publication of the Federation of American Societies for Experimental Biology 15 (2001) 719-730. [4]T.W. Synold, I. Dussault, B.M. Forman, The orphan nuclear receptor SXR coordinately regulates drug metabolism and efflux. Nature Medicine 7 (2001) 584-590. [5]A. Basu, S. Krishnamurthy, Cellular responses to Cisplatin-induced DNA damage. Journal of Nucleic Acids 2010 (2010). [6]H.K. Wong, D.M. Wilson, 3rd, XRCC1 and DNA polymerase beta interaction contributes to cellular alkylating-agent resistance and single-strand break repair. Journal of Cellular Biochemistry 95 (2005) 794-804. [7]Y.A. Luqmani, Mechanisms of drug resistance in cancer chemotherapy. Medical principles and practice : international journal of the Kuwait University, Health Science Centre 14 Suppl 1 (2005) 35-48. [8]A.A. Stavrovskaya, T.P. Stromskaya, Transport proteins of the ABC family and multidrug resistance of tumor cells. Biochemistry. Biokhimiia 73 (2008) 592-604. [9]G. Szakacs, J.K. Paterson, J.A. Ludwig, C. Booth-Genthe, M.M. Gottesman, Targeting multidrug resistance in cancer. Nature Reviews. Drug Discovery 5 (2006) 219-234. [10]J.I. Fletcher, M. Haber, M.J. Henderson, M.D. Norris, ABC transporters in cancer: more than just drug efflux pumps. Nature Reviews. Cancer 10 (2010) 147-156. [11]J. Sampath, D. Sun, V.J. Kidd, J. Grenet, A. Gandhi, L.H. Shapiro, Q. Wang, G.P. Zambetti, J.D. Schuetz, Mutant p53 cooperates with ETS and selectively up-regulates human MDR1 not MRP1. The Journal of Biological Chemistry 276 (2001) 39359-39367. [12]B. Ogretmen, A.R. Safa, Expression of the mutated p53 tumor suppressor protein and its molecular and biochemical characterization in multidrug resistant MCF-7/Adr human breast cancer cells. Oncogene 14 (1997) 499-506. [13]Y. Toyoda, Y. Hagiya, T. Adachi, K. Hoshijima, M.T. Kuo, T. Ishikawa, MRP class of human ATP binding cassette (ABC) transporters: historical background and new research directions. Xenobiotica; the fate of foreign compounds in biological systems 38 (2008) 833-862. [14]C. Shinoda, M. Maruyama, T. Fujishita, J. Dohkan, H. Oda, K. Shinoda, T. Yamada, K. Miyabayashi, R. Hayashi, Y. Kawagishi, T. Fujita, S. Matsui, E. Sugiyama, A. Muraguchi, M. Kobayashi, Doxorubicin induces expression of multidrug resistance-associated protein 1 in human small cell lung cancer cell lines by the c-jun N-terminal kinase pathway. International Journal of Cancer. Journal International du Cancer 117 (2005) 21-31. [15]W.P. Tsang, S.P. Chau, K.P. Fung, S.K. Kong, T.T. Kwok, Modulation of multidrug resistance-associated protein 1 (MRP1) by p53 mutant in Saos-2 cells. Cancer Chemotherapy and Pharmacology 51 (2003) 161-166. [16]C.F. Manohar, J.A. Bray, H.R. Salwen, J. Madafiglio, A. Cheng, C. Flemming, G.M. Marshall, M.D. Norris, M. Haber, S.L. Cohn, MYCN-mediated regulation of the MRP1 promoter in human neuroblastoma. Oncogene 23 (2004) 753-762. [17]J.M. Lee, J. Li, D.A. Johnson, T.D. Stein, A.D. Kraft, M.J. Calkins, R.J. Jakel, J.A. Johnson, Nrf2, a multi-organ protector? The FASEB journal : official publication of the Federation of American Societies for Experimental Biology 19 (2005) 1061-1066. [18]N.Y. Song, D.H. Kim, E.H. Kim, H.K. Na, Y.J. Surh, 15-Deoxy-delta 12, 14-prostaglandin J2 induces upregulation of multidrug resistance-associated protein 1 via Nrf2 activation in human breast cancer cells. Annals of the New York Academy of Sciences 1171 (2009) 210-216. [19]R.W. Robey, O. Polgar, J. Deeken, K.W. To, S.E. Bates, ABCG2: determining its relevance in clinical drug resistance. Cancer Metastasis Reviews 26 (2007) 39-57. [20]M. Lahn, G. Kohler, K. Sundell, C. Su, S. Li, B.M. Paterson, T.F. Bumol, Protein kinase C alpha expression in breast and ovarian cancer. Oncology 67 (2004) 1-10. [21]I. Carey, C.L. Williams, D.K. Ways, J.D. Noti, Overexpression of protein kinase C-alpha in MCF-7 breast cancer cells results in differential regulation and expression of alphavbeta3 and alphavbeta5. International Journal of Oncology 15 (1999) 127-136. [22]S.A. Lee, J.W. Karaszkiewicz, W.B. Anderson, Elevated level of nuclear protein kinase C in multidrug-resistant MCF-7 human breast carcinoma cells. Cancer Research 52 (1992) 3750-3759. [23]J.C. Reed, Promise and problems of Bcl-2 antisense therapy. Journal of the National Cancer Institute 89 (1997) 988-990. [24]C. Tophkhane, S. Yang, W. Bales, L. Archer, A. Osunkoya, A.D. Thor, X. Yang, Bcl-2 overexpression sensitizes MCF-7 cells to genistein by multiple mechanisms. International Journal of Oncology 31 (2007) 867-874. [25]B. Ogretmen, A.R. Safa, Down-regulation of apoptosis-related bcl-2 but not bcl-xL or bax proteins in multidrug-resistant MCF-7/Adr human breast cancer cells. International Journal of Cancer. Journal International du Cancer 67 (1996) 608-614. [26]T.R. Wilson, K.M. McLaughlin, M. McEwan, H. Sakai, K.M. Rogers, K.M. Redmond, P.G. Johnston, D.B. Longley, c-FLIP: a key regulator of colorectal cancer cell death. Cancer Research 67 (2007) 5754-5762. [27]W.D. Meacham, J.W. Antoon, M.E. Burow, A.P. Struckhoff, B.S. Beckman, Sphingolipids as determinants of apoptosis and chemoresistance in the MCF-7 cell model system. Experimental Biology and Medicine (Maywood) 234 (2009) 1253-1263. [28]Y.Y. Liu, J.Y. Yu, D. Yin, G.A. Patwardhan, V. Gupta, Y. Hirabayashi, W.M. Holleran, A.E. Giuliano, S.M. Jazwinski, V. Gouaze-Andersson, D.P. Consoli, M.C. Cabot, A role for ceramide in driving cancer cell resistance to doxorubicin. The FASEB journal : official publication of the Federation of American Societies for Experimental Biology 22 (2008) 2541-2551. [29]V. Gouaze-Andersson, J.Y. Yu, A.J. Kreitenberg, A. Bielawska, A.E. Giuliano, M.C. Cabot, Ceramide and glucosylceramide upregulate expression of the multidrug resistance gene MDR1 in cancer cells. Biochimica et Biophysica Acta 1771 (2007) 1407-1417. [30]L.M. Starita, J.D. Parvin, The multiple nuclear functions of BRCA1: transcription, ubiquitination and DNA repair. Current Opinion In Cell Biology 15 (2003) 345-350. [31]J. Su, K. Ciftci, Changes in BRCA1 and BRCA2 expression produced by chemotherapeutic agents in human breast cancer cells. The International Journal of Biochemistry & Cell Biology 34 (2002) 950-957. [32]S. Kurki, L. Latonen, M. Laiho, Cellular stress and DNA damage invoke temporally distinct Mdm2, p53 and PML complexes and damage-specific nuclear relocalization. Journal of Cell Science 116 (2003) 3917-3925. [33]Y. Liang, S. McDonnell, M. Clynes, Examining the relationship between cancer invasion/metastasis and drug resistance. Current Cancer Drug Targets 2 (2002) 257-277. [34]H. Peinado, D. Olmeda, A. Cano, Snail, Zeb and bHLH factors in tumour progression: an alliance against the epithelial phenotype? Nature Reviews Cancer 7 (2007) 415-428. [35]J.P. Thiery, J.P. Sleeman, Complex networks orchestrate epithelial-mesenchymal transitions. Nature reviews. Molecular Cell Biology 7 (2006) 131-142. [36]M.K. Tripathi, S. Misra, S.V. Khedkar, N. Hamilton, C. Irvin-Wilson, C. Sharan, L. Sealy, G. Chaudhuri, Regulation of BRCA2 gene expression by the SLUG repressor protein in human breast cells. The Journal of Biological Chemistry 280 (2005) 17163-17171. [37]C. Cobaleda, M. Perez-Caro, C. Vicente-Duenas, I. Sanchez-Garcia, Function of the zinc-finger transcription factor SNAI2 in cancer and development. Annual Review of Genetics 41 (2007) 41-61. [38]S. Kuzmich, K.D. Tew, Detoxification mechanisms and tumor cell resistance to anticancer drugs. Medicinal Research Reviews 11 (1991) 185-217. [39]K. Wang, S. Ramji, A. Bhathena, C. Lee, D.S. Riddick, Glutathione S-transferases in wild-type and doxorubicin-resistant MCF-7 human breast cancer cell lines. Xenobiotica; the fate of foreign compounds in biological systems 29 (1999) 155-170. [40]J.K. Kundu, Y.J. Surh, Nrf2-Keap1 signaling as a potential target for chemoprevention of inflammation-associated carcinogenesis. Pharmaceutical Research 27 (2010) 999-1013. [41]W.S. Jeong, M. Jun, A.N. Kong, Nrf2: a potential molecular target for cancer chemoprevention by natural compounds. Antioxidants & Redox Signaling 8 (2006) 99-106. [42]A. Lau, N.F. Villeneuve, Z. Sun, P.K. Wong, D.D. Zhang, Dual roles of Nrf2 in cancer. Pharmacological Research : the official journal of the Italian Pharmacological Society 58 (2008) 262-270. [43]T. Fojo, S. Bates, Strategies for reversing drug resistance. Oncogene 22 (2003) 7512-7523. [44]W.N. Keith, S. Stallard, R. Brown, Expression of mdr1 and gst-pi in human breast tumours: comparison to in vitro chemosensitivity. British Journal of Cancer 61 (1990) 712-716. [45]C. Meijer, N.H. Mulder, E.G. de Vries, The role of detoxifying systems in resistance of tumor cells to cisplatin and adriamycin. Cancer Treatment Reviews 17 (1990) 389-407. [46]G.S. Shim, S. Manandhar, D.H. Shin, T.H. Kim, M.K. Kwak, Acquisition of doxorubicin resistance in ovarian carcinoma cells accompanies activation of the NRF2 pathway. Free Radical Biology & Medicine 47 (2009) 1619-1631. [47]C.K. Osborne, K. Hobbs, J.M. Trent, Biological differences among MCF-7 human breast cancer cell lines from different laboratories. Breast Cancer Research and Treatment 9 (1987) 111-121. [48]I. Poola, S.A. Fuqua, R.L. De Witty, J. Abraham, J.J. Marshallack, A. Liu, Estrogen receptor alpha-negative breast cancer tissues express significant levels of estrogen-independent transcription factors, ERbeta1 and ERbeta5: potential molecular targets for chemoprevention. Clinical Cancer Research : an official journal of the American Association for Cancer Research 11 (2005) 7579-7585. [49]S.D. Conzen, Minireview: nuclear receptors and breast cancer. Molecular Endocrinology 22 (2008) 2215-2228. [50]Z. Lin, S. Reierstad, C.C. Huang, S.E. Bulun, Novel estrogen receptor-alpha binding sites and estradiol target genes identified by chromatin immunoprecipitation cloning in breast cancer. Cancer Research 67 (2007) 5017-5024. [51]K. Mehta, E. Devarajan, J. Chen, A. Multani, S. Pathak, Multidrug-resistant MCF-7 cells: an identity crisis? Journal of the National Cancer Institute 94 (2002) 1652-1654; author reply 1654. [52]C.W. Taylor, W.S. Dalton, P.R. Parrish, M.C. Gleason, W.T. Bellamy, F.H. Thompson, D.J. Roe, J.M. Trent, Different mechanisms of decreased drug accumulation in doxorubicin and mitoxantrone resistant variants of the MCF7 human breast cancer cell line. British Journal of Cancer 63 (1991) 923-929. [53]A.L. Dogan, O. Legrand, A.M. Faussat, J.Y. Perrot, J.P. Marie, Evaluation and comparison of MRP1 activity with three fluorescent dyes and three modulators in leukemic cell lines. Leukemia Research 28 (2004) 619-622. [54]O. Legrand, G. Simonin, J.Y. Perrot, R. Zittoun, J.P. Marie, Pgp and MRP activities using calcein-AM are prognostic factors in adult acute myeloid leukemia patients. Blood 91 (1998) 4480-4488. [55]A.M. Calcagno, J.M. Fostel, K.K. To, C.D. Salcido, S.E. Martin, K.J. Chewning, C.P. Wu, L. Varticovski, S.E. Bates, N.J. Caplen, S.V. Ambudkar, Single-step doxorubicin-selected cancer cells overexpress the ABCG2 drug transporter through epigenetic changes. British Journal of Cancer 98 (2008) 1515-1524. [56]M.G. Daidone, A. Luisi, S. Veneroni, E. Benini, R. Silvestrini, Clinical studies of Bcl-2 and treatment benefit in breast cancer patients. Endocrine-Related Cancer 6 (1999) 61-68. [57]W.S. El-Deiry, The role of p53 in chemosensitivity and radiosensitivity. Oncogene 22 (2003) 7486-7495. | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/7073 | - |
dc.description.abstract | 癌細胞對多種化療藥物產生抵抗力,此種現象稱為多重抗藥性,常為造成化療失敗的原因。細胞產生抗藥性的原因一直被熱烈的探討,且也可以使用細胞毒性藥物來篩選並建立抗藥性細胞株。藉由減少、喪失或變更藥物標靶、使細胞凋亡的訊息傳遞受阻、增進細胞DNA受藥物損害後的修復能力、活化更多與細胞內解毒及藥物代謝相關的酵素、增強排除藥物至細胞外的功能、減少藥物進入細胞的量,癌細胞可對單一種藥物或者一系列藥物產生抗藥性。
MCF-7/ADR為對doxorubicin具抗藥性的人類乳癌細胞株,相較於MCF-7/WT,其過量表現P-glycoprotein減少了doxorubicin在細胞內的量並展現多重抗藥性的樣貌。本實驗室將MCF-7/WT培養在以1 nM doxorubicin為起始濃度的培養基中,待細胞生長穩定後,增加為兩倍藥物量,篩選對doxorubicin有抗藥性的細胞稱MCF-7/ADR-n,n為1 nM的倍數。目前分別建立了MCF-7/ADR-1、MCF-7/ADR-2、MCF-7/ADR-4、MCF-7/ADR-8、MCF-7/ADR-16、MCF-7/ADR-32、MCF-7/ADR-64、MCF-7/ADR-128、MCF-7/ADR-256、MCF-7/ADR-512、MCF-7/ADR-1024共11種對不同濃度的doxorubicin具有抗藥性的細胞株,細胞培養的終點止於P-glycoprotein的出現為MCF-7/ADR-1024,其與MCF-7/ADR具有相同程度的抗藥性(對doxorubicin的IC50分別為10.3 μM及12.9 μM)。 本研究利用一系列不同抗藥性程度的細胞,來探討doxorubicin對MCF-7產生抗藥性的過程中,在ABC轉運蛋白、細胞凋亡、抗氧化及藥物代謝、DNA修復、細胞增生等方面之相關基因表現有無變化。在ABC轉運蛋白方面,從MCF-7/ADR-32細胞開始MRP1運輸蛋白的mRNA表現量開始漸升,在MCF-7/ADR-256 中MRP1的mRNA表現量為最高點,然而在MCF-7/ADR-512、MCF-7/ADR-1024中下降至與MCF-7/WT相同程度,而P-gp的mRNA卻僅在MCF-7/ADR-1024才大量表現。 MRP1出現及消失與P-gp的出現兩者之間是否有相關,目前尚無法證明,而MRP1運輸蛋白mRNA的大量表現可能為細胞對doxorubicin具有較低程度抗藥性的原因。在細胞凋亡方面,Bcl-2的mRNA在MCF-7/ADR-1024時表現量減少,GCS的mRNA表現量則是增加;在DNA修補方面,BRCA1/2的mRNA表現量隨著對doxorubicin抗藥性程度增加而減少,野生型p53在MCF-7/ADR-1024及MCF-7/ADR中大量減少,突變型p53基因表現量在MCF-7/ADR-1024及MCF-7/ADR中大量增加,而總p53的基因及蛋白表現量均呈現上升的趨勢,顯示突變可能會增加p53的半衰期,而使總p53蛋白量增加。在抗氧化還原方面,GCL及轉錄因子Nrf2在基因表現量上並沒有明顯變化,GSTπ只在MCF-7/ADR-1024及MCF-7/ADR中大量表現。在EMT相關基因中,E-cadherin的mRNA表現量在MCF-7/ADR-1024及MCF-7/ADR中大量減少,N-cadherin、Vimentin及可抑制E-cadherin表現的轉錄因子ZEB1、ZEB2、Twist1、Slug表現量在MCF-7/ADR-1024及MCF-7/ADR中增加,細胞的型態也在MCF-7/ADR-1024時與MCF-7/WT(類似上皮細胞)有所不同,較類似間質細胞。另外,PKCα的基因表現量隨著對doxorubicin抗藥性程度增加而增加,ER-α的mRNA在MCF-7/ADR-1024及MCF-7/ADR中幾乎沒有表現。 總而言之,以建立的11種不同程度的doxorubicin抗藥性細胞,分析比較細胞間的基因表現差異,可使我們對MCF-7細胞對doxorubicin產生抗藥性的原因有更多了解,也提供往後其他與抗藥性相關研究的基礎。 | zh_TW |
dc.description.abstract | The ability of cancer cells to become simultaneously resistant to different drugs — a trait known as multidrug resistance — remains a significant impediment to successful chemotherapy. Cellular mechanisms of drug resistance have been intensively studied, as experimental models can be easily generated by in vitro selection with cytotoxic agents. Cancer cells in culture can become resistant to a single drug, or a class of drugs with a similar mechanism of action, by altering the drug’s cellular target or by increasing repair of drug-induced damage, frequently to DNA.
MCF-7/ADR is a doxorubicin-resistant cell line. In comparison with MCF-7/WT, MCF-7/ADR overexpresses P-gp that lowers the intracellular concentration of doxorubicin and exhibits the multidrug resistnace. Resistant cells were selected by doxorubicin at the starting concentration 1 nM. After the cells were tolerable, doubling the drug concentration was applied till the cells acquired tolerance. Followed by repeated treatments, 11 cell lines were established with incremental resistance to doxorubicin. The series of cells are so-called MCF-7/ADR-n and named as MCF-7/ADR-1、MCF-7/ADR-2、MCF-7/ADR-4、MCF-7/ADR-8、MCF-7/ADR-16、MCF-7/ADR-32、MCF-7/ADR-64、MCF-7/ADR-128、MCF-7/ADR-256、MCF-7/ADR-512、MCF-7/ADR-1024, respectively. To investigate the gene expression profiles during resistance induction, the expression levels were measured for genes involving in ABC transporter protein, apoptosis, antioxidant and drug metabolism, DNA repair and cell proliferation in the series of MCF-7/ADR-n. Regarding ABC transporters, MRP1 expression increased slightly in MCF-7/ADR-32 and a peak was observed in MCF-7/ADR-256, then declined afterwards. P-gp mRNA bursted only in MCF-7/ADR-1024. The association of MRP1 with P-gp is still unclear. Regarding apoptosis genes, Bcl-2 expression decreased with the elevated resistance to doxorubicin, but GCS mRNA expression was in the opposite way. Regarding DNA repair system, BRCA1/2 expression levels decreased with the elevation of doxorubicin resistance. Wild-type p53 mRNA importantly dropped in MCF-7/ADR-1024, while mutant p53 mRNA markedly appeared in MCF-7/ADR-1024. Levels of total p53 mRNA and protein were elevated with the increased doxorubicin resistance. Longer half life of mutated p53 may contribute to the elevation. Regarding antioxidant and drug metabolism, GCL and transcription factor Nrf2 showed slightly changes in mRNA expression, and GSTπ was overexpressed only in MCF-7/ADR-1024. Regarding EMT related genes, E-cadherin mRNA almost vanished in MCF-7/ADR-1024, but N-cadherin、Vimentin and E-cadherin transcription suppressors (i.e. ZEB1、ZEB2、Twist1 and Slug) were overexpressed in MCF-7/ADR-1024. MCF-7/ADR-1024 is mesenchymal-like and is different from MCF-7/WT. PKCα mRNA rised with the elevation of doxorubicin resistance, while ER-α mRNA dropped in MCF-7/ADR-1024. In conclusion, a series of MCF-7 cells with incremental resistance to doxorubicin were established. Eleven cell lines were employed for measurement of gene expression to better understand gene profiles in the induction of doxorubicin resistance in MCF-7. | en |
dc.description.provenance | Made available in DSpace on 2021-05-17T10:18:12Z (GMT). No. of bitstreams: 1 ntu-100-R98423009-1.pdf: 3435193 bytes, checksum: cb3e85037e65a3decaa3f3b4b17362ca (MD5) Previous issue date: 2011 | en |
dc.description.tableofcontents | 誌謝 iii
中文摘要 i 英文摘要 iii 目錄 v 圖目錄 vii 表目錄 ix 縮寫對照表 x 第一章、緒論 1 1.1 多重抗藥性 1 1.2 ABC轉運蛋白家族在多重抗藥性中扮演角色及功能 2 1.3 其他可能使癌細胞表現抗藥性或侵入組織性之相關分子 4 1.4 Doxorubicin之作用機制與影響 7 1.5 MCF-7/ADR細胞及MCF-7 Wild Type細胞之差異 8 1.6 利用doxorubicin篩選並建立具抗藥性之MCF-7細胞 9 1.7 研究目的 9 第二章、材料與研究方法 11 2.1 實驗儀器 11 2.2 實驗材料 12 2.3 培養液、培養基與緩衝液之配製 13 2.4 實驗方法 15 一、 培養基之製備 15 二、 細胞株培養及抗藥性細胞株之建立 16 三、 逆轉錄-聚合酶連鎖反應法 (Reverse-Transcription PCR) 16 四、 即時定量-聚合酶連鎖反應法 (Real-Time PCR) 18 五、 西方點墨法 (Western blot) 19 六、四甲基偶氮唑鹽比色法 (MTT assay) 21 七、Rhodamine 123/calcein-AM螢光染劑法 (MDR1/MRP1 functional assay) 21 2.5 統計檢定 22 第三章、實驗結果 23 第四章、討論 29 第五章、結論 35 第六章、圖表 36 第七章、參考文獻 60 | |
dc.language.iso | zh-TW | |
dc.title | Doxorubicin誘導MCF-7/WT轉變為抗藥性細胞株的過程中基因變化之探討 | zh_TW |
dc.title | The gene expression profile in the induction of doxorubicin-resistant MCF-7 cells | en |
dc.type | Thesis | |
dc.date.schoolyear | 100-1 | |
dc.description.degree | 碩士 | |
dc.contributor.oralexamcommittee | 許麗卿(Lih-Ching Hsu),楊家榮(Chia-Ron Yang) | |
dc.subject.keyword | Doxorubicin,MCF-7,MCF-7/ADR,MDR1,MRP1,多重抗藥性, | zh_TW |
dc.subject.keyword | Doxorubicin,MCF-7,MCF-7/ADR,MDR1,MRP1,Multidrug resistance, | en |
dc.relation.page | 66 | |
dc.rights.note | 同意授權(全球公開) | |
dc.date.accepted | 2011-09-29 | |
dc.contributor.author-college | 醫學院 | zh_TW |
dc.contributor.author-dept | 藥學研究所 | zh_TW |
Appears in Collections: | 藥學系 |
Files in This Item:
File | Size | Format | |
---|---|---|---|
ntu-100-1.pdf | 3.35 MB | Adobe PDF | View/Open |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.