Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 理學院
  3. 數學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/70735
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor鄭日新(Jih-Hsin Cheng)
dc.contributor.authorWei-Ting Kaoen
dc.contributor.author高尉庭zh_TW
dc.date.accessioned2021-06-17T04:36:35Z-
dc.date.available2018-08-09
dc.date.copyright2018-08-09
dc.date.issued2018
dc.date.submitted2018-08-08
dc.identifier.citation[1] Richard Arnowitt, Stanley Deser, and Charles W Misner. Coordinate invariance and energy expressions in general relativity. Physical Review, 122(3):997, 1961.
[2] Jih-Hsin Cheng, Hung-Lin Chiu, and Paul Yang. Uniformization of spherical cr manifolds. Advances in Mathematics, 255:182–216, 2014.
[3] Jih-Hsin Cheng, Andrea Malchiodi, and Paul Yang. A positive mass theorem in three dimensional cauchy–riemann geometry. Advances in Mathematics, 308:276–347, 2017.
[4] James J Faran et al. Local invariants of foliations by real hypersurfaces. The Michigan Mathematical Journal, 35(3):395–404, 1988.
[5] C Robin Graham, John M Lee, et al. Smooth solutions of degenerate laplacians on strictly pseudoconvex domains. Duke mathematical journal, 57(3):697–720, 1988.
[6] Chin-Yu Hsiao and Po-Lam Yung. Solving the kohn laplacian on asymptotically flat cr manifolds of dimension 3. Advances in Mathematics, 281:734– 822, 2015.
[7] David Jerison, John M Lee, et al. The yamabe problem on cr manifolds. Journal of Differential Geometry, 25(2):167–197, 1987.
[8] David Jerison, John M Lee, et al. Intrinsic cr normal coordinates and the cr yamabe problem. Journal of Differential Geometry, 29(2):303–343, 1989.
[9] John M Lee and Thomas H Parker. The yamabe problem. Bulletin of the American Mathematical Society, 17(1):37–91, 1987.
[10] Richard Schoen et al. Conformal deformation of a riemannian metric to constant scalar curvature. Journal ofDifferential Geometry, 20(2):479–495, 1984.
[11] Richard Schoen and Shing-Tung Yau. On the proof of the positive mass conjecture in general relativity. Communications in Mathematical Physics, 65(1):45–76, 1979.
[12] Noboru Tanaka. A differential geometric study on strongly pseudo-convex manifolds. Kinokuniya, 1975.
[13] Sidney M Webster et al. Pseudo-hermitian structures on a real hypersurface. Journal of Differential Geometry, 13(1):25–41, 1978.
[14] Edward Witten. A new proof of the positive energy theorem. Communications in Mathematical Physics, 80(3):381–402, 1981.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/70735-
dc.description.abstract我們考慮用一函數定義的一簇仿埃爾米特流型在二維複向量空間,並在這擾動下給出仿埃爾米特質量的變分公式。為了得出這個結果,我們推廣了Graham 跟Lee所導出的環繞聯絡使其可應用在任意的切觸形式對於這簇仿埃爾米特流型,並且導出在這理論下的共形變換公式去得到偽質量的變分公式。zh_TW
dc.description.abstractWe consider a family of pseudohermitian manifolds in two dimensional complex vector space, described by the level sets of a defining function, and give the variation formula of p-mass for this deformation. To obtain this result, we generalize the ambient connection done by Graham and Lee for arbitrary contact form and derive the conformal transformation in this theory.en
dc.description.provenanceMade available in DSpace on 2021-06-17T04:36:35Z (GMT). No. of bitstreams: 1
ntu-107-R05221002-1.pdf: 1252907 bytes, checksum: d940ad4efd0daa967a4918aeea8f2d3b (MD5)
Previous issue date: 2018
en
dc.description.tableofcontents1 Introduction 2
2 Preliminary 5
2.1 CR manifolds and Tanaka-Wesbter connection . . . . . . . . . . . 5
2.2 Asymptotic flat pseudohermitian manifolds and p-mass . . . . . . 6
3 Positive mass theorem on 3-dimensional CR manifolds...9
4 Graham-Lee ambient connection...12
5 Generalized Graham-Lee ambient connection 6 Variation ...14
6 formula of p-mass...18
Reference ...23
dc.language.isoen
dc.subject正質量定理zh_TW
dc.subject柯西黎曼流型zh_TW
dc.subjectpositive mass theoremen
dc.subjectpseudohermitian massen
dc.subjectpseudohermitian manifolden
dc.title在三維度柯西黎曼流行上的仿埃米爾特質量變分公式zh_TW
dc.titleThe variation of p-mass on three dimensional CR manifoldsen
dc.typeThesis
dc.date.schoolyear106-2
dc.description.degree碩士
dc.contributor.oralexamcommittee蕭欽玉(Chin-Yu Hsiao),邱鴻麟(Hung-Lin Chiu)
dc.subject.keyword柯西黎曼流型,正質量定理,zh_TW
dc.subject.keywordpseudohermitian manifold,pseudohermitian mass,positive mass theorem,en
dc.relation.page24
dc.identifier.doi10.6342/NTU201802485
dc.rights.note有償授權
dc.date.accepted2018-08-09
dc.contributor.author-college理學院zh_TW
dc.contributor.author-dept數學研究所zh_TW
顯示於系所單位:數學系

文件中的檔案:
檔案 大小格式 
ntu-107-1.pdf
  未授權公開取用
1.22 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved