Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生物資源暨農學院
  3. 森林環境暨資源學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/70734
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor林法勤(Far-ching Lin)
dc.contributor.authorChien-Yu Yangen
dc.contributor.author楊茜諭zh_TW
dc.date.accessioned2021-06-17T04:36:33Z-
dc.date.available2023-08-09
dc.date.copyright2018-08-09
dc.date.issued2018
dc.date.submitted2018-08-08
dc.identifier.citation王松永(1986)柳杉及杉木之材質與利用(II)。林產工業5(1): 66-76。
王松永(2000)商用木材。中華林產事業協會。377頁。
王松永(2001)木材物理學。國立編譯館。816頁。
王松永、塗三賢(2007)木材利用、木構建築對溫室氣體減量貢獻。林業研究專訊14(6): 1-5。
王松永、張豐丞、李怡真、楊賜霖、林法勤(2005)柳杉疏伐木有效利用之探討。台大實驗林研究報告19(4): 293-300。
王松永、夏榮生(1990)臺灣主要經濟樹種材質之基礎研究(11):長尾尖櫧,光腊樹及臺灣櫸之單面與全面水分移動速度之變異性。林產工業9(4): 13-29。
中華民國內政部營建署(2011)木構造建築物設計及施工技術規範。134頁。
中華民國行政院環境保護署(2017)中華民國國家溫室氣體排放清冊報告。1頁。
經濟部標準檢驗局(2011)木材抗壓試驗法。CNS 453。中華民國國家標準。8頁。
經濟部標準檢驗局(2013)木材抗彎試驗法。CNS454。中華民國國家標準。7頁。
經濟部標準檢驗局(2016)結構用集成材。CNS 11031。中華民國國家標準。45頁。
山邊豐彥(2015)圖解木構造。城邦文化出版社。251頁。
伊原惠司(2000)修理技法。原臺南州廳修復技術研討暨研習資料彙編。國立文化資產保存研究中心籌備處。250頁。
李有豐、朱國棟、張國鎮、黃震興、王仲宇(1999)FRP複合材料補強橋墩設計準則之研究。交通部科技顧問室。19頁。
李佳如、楊德新(2010)應用非破壞檢測技術評估杉木膠合單元之抗彎性質。林業研究季刊。32(4): 45-59。
李佳如、張夆榕、林志憲、楊德新(2014)35年生國產柳杉分等結構用材之機械性質評估。林產工業33(2): 61-70。
吳卓夫、葉基棟(2011)營造法與施工(上)。茂榮書局。460頁。
吳惠玄(2010)影響臺灣本土私人的低層木構造住宅推廣關鍵成功因素之研究。國立高雄大學都市發展與建築研究所碩士論文。93頁。
林振榮、曾家琳、李佳如、王亞男、蔡明哲(2008)柳杉紅色及黑色心材造林木物理性材質之評估。臺大實驗林研究報告22(4): 211-227。
周惠娟(2003)CFRP補強木材複合材靜曲效能改善之研究。國立臺灣大學生物資源暨農學院森林環境暨資源學系研究所碩士論文。72頁。
洪育成(2007)北美木構建築介紹。林業研究專訊14(6): 6-9。
徐耀賜(2001)複合材料(FRP) –混凝土橋樑結構補強加固之利器。土木技術4(3): 135-154。
陳誠直、李中彥(1998)連續纖維補強複合材於混凝土結構之應用。化工技術6(4): 162-169.
陳載永、葉政翰(1996)樹種對三種非破壞性測定儀檢測木材彈性係數之影響。林產工業15(2): 285-294。
黃彥三、陳欣欣(1996)以打音非破壞試驗推定木材含水率變化之研究。臺灣林業科學11(4): 367-372。
張豐丞、張夆榕、趙偉成、楊德新(2015)熱處理柳杉製材之抗彎性能評估。林產工業34(2): 59-68.
曾俊達、黃文鴻(2012)臺灣木構造建築複合構法之研究。建築學報82(S): 1-20。
葉民權、李文雄、林玉麗(2006)國產柳杉造林木開發結構用集成材之研究。臺灣林業科學21(4):531-546。
楊德新(2007)中小徑木製造構造用集成材及其工程性能之研究。國立臺灣大學生物資源暨農學院森林環境暨資源學系研究所博士論文。155頁。
楊德新、李佳如、蔡明哲、莊閔傑(2018)評估臺灣櫸造林木做為木結構補強材料之可行性。臺大實驗林研究報告。期刊已接受尚未出刊。
蔡明哲、周惠娟、謝耀明、李有豐、林蘭東(2005)碳纖維強化木質複合材料之加速劣化研究。林產工業24(3): 237-246。
劉業經、呂福原、歐辰雄(1994)臺灣樹木誌。國立中興大學農學院出版委員會。925頁。
劉錦源(2003)用轉移矩陣法做破壞樑結構之振動分析與研究。大葉大學車輛工程學研究所碩士論文。
賴政彥、葉民權(2002)不同樑腹材料對杉木複合工字樑靜曲性質之影響。臺灣林業科學17(2): 219-230。
蘇文清、陳周宏、陳柏璋、王怡仁(2007)荷重跨距內節特徵對臺灣杉及杉木抗彎性質的影響。林產工業26(2): 149-157。
AITC 108-93 (1993) Standard for heavy timber construction. American Institute of Timber Construction. 4pp.
ASTM D143-94 (2000) Standard test methods for small clear specimens of timber. 31 pp.
Baar, J., J. Tippner and P. Rademacher (2015) Prediction of mechanical properties-modulus of rupture and modulus of elasticity-of five tropical species by nondestructive methods. Maderas Ciencia y Tecnología. 17(2): 239-252.
Bailleres, H., G. Hopewell, G. Boughton and L. Brancheriau (2012) Strength and stiffness assessment technologies for improving grading effectiveness of radiata pine wood. BioResources 7(1): 1264-1282.
Bal, B. C. and I. Bektas (2012) The effects of heat treatment on the physical properties of juvenile wood and mature wood of eucalyptus grandis. Bioresources 7(4): 5117-5127.
Basterra, L. A., J. A. Balmori, L. Morillas, L. Acuña and M. Casado (2017) Internal reinforcement of laminated duo beams of low-grade timber with GFRP sheets. Construction and Building Materials 154: 914-920.
Bauchau, O. A. and J. I. Craig (2009) Structural analysis-with applications to aerospace structures. Springer. 943pp.
Bohannan, B. (1962) Prestressed wood members. Forest Products Journal 12(12):596-602.
Börjesson, P and L. Gustavsson (2000) Greenhouse gas balances in building construction: wood versus concrete from life-cycle and forest land-use perspectives. Energy Policy 28: 575-588.
Borri, A., M. Corradi and A. Grazini (2005) A method for flexural reinforcement of old wood beams with CFRP materials. Composites Part B: Engineering 36(2): 143-153.
Bulleit, W. M. (1983) Reinforcement of wood materials: A Review. Wood and Fiber Science 16(3): 391-397.
Burdzik, W. M. G. and P. D. Nkwera (2002) Transverse vibration tests for prediction of stiffness and strength properties of full size Eucalyptus grandis. Forest Products Journal 52(6): 63-67.
Carr, W. R. (1962) An Investigation of steel reinforced wood laminated beams. Master Thesis. The University of Montana. 50pp.
Chen, T.Y., J.H. Yeh (1996) Influence of wood species on the modulus of elasticity of wood with three kinds of nondestructive test instruments. Forest Product Industry 15(2):285-94.
Connor, M. L. (2008) Characterization of recycled carbon fibers and their formation of composites using injection molding. Master Thesis. North Carolina State University. 100pp.
Courchene, T., F. Lam and J. D. Barrett (1998) The effect of edge knots on the strength of SPF MSR lumber. Forest Products Journal 48(4): 75-81.
Deshpande, V. S. and N. A. Fleck (2001) Collapse of truss core sandwich beams in 3-point bending. International Journal of Solids and Structures 38: 6275-6305.
Dole, D. V. and L. J. Marwardt (1966) Properties of southern pine in relation to strength grading of dimension lumber. Research paper., U.S. Department of Agriculture. 62 pp.
Erikson, R. G., T. M. Gorman, D. W. Green and D. Graham (2000) Mechanical grading of lumber sawn from small-diameter lodgepole pine, ponderosa pine, and grand fir trees from northern Idaho. Forest Products Journal 50(7-8): 59-65.
Fathi, A., F. Wolff-Fabris, V. Altstädt and R. Gätzi (2013) An investigation on the flexural properties of balsa and polymer foam core sandwich structures: Influence of core type and contour finishing options. Journal of Sandwich Structures and Materials 15(5): 487-508.
Fleck, N. A. and V. S. Deshpande (2004) The resistance of clamped sandwich beams to shock loading. Journal of Applied Mechanics 71(3): 386-401.
Galligan, W. L., E. Kallio and I. Sheppard (1977) Lumber truss design - views of designers and regulatory agencies. Forest Products Journal 27(12): 25-29.
García, P. R., A. C. Escamilla and M. N. G. García (2013) Bending reinforcement of timber beams with composite carbon fiber and basalt fiber materials. Composites: Part B 55: 528-536.
Gentile, C., D. Svecova and S. H. Rizkalla (2002) Timber Beams Strengthened with GFRP Bars: Development and Applications. Journal of Composites for Construction 6(1): 11-20.
Gordaninejad, F. and C. W. Bert (1989) A new theory for bending of thick sandwich beams. International Journal of Mechanical Sciences 31(11-12): 925-934.
Gutkowski, R., K. Brown, A. Shigidi and J. Natterer (2008) Laboratory tests of composite wood-concrete beams. Construction and Building Materials 22(6): 1059-1066.
Gustavsson, L, A. Joelsson and R. Sathre (2010) Life cycle primary energy use and carbon emission of an eight-storey wood-framed apartment building. Energy and Buildings 42(2): 230-242.
Gustavsson, L and A. Joelsson (2010) Life cycle primary energy analysis of residential buildings. Energy and Buildings 42(2): 210-220.
Gustavsson, L and R. Sathre (2006) Variability in energy and carbon dioxide balances of wood and concrete building materials. Building and Environment 41: 940-951.
Hibbeler, R. C. (2011) Mechanics of materials. Pearson Education. 862pp.
Hildebrandt, J., N. Hagemann and D. Thrän (2017) The contribution of wood-based construction materials for leveraging a low carbon building sector in Europe. Sustainable Cities and Society 34: 405-418.
Hill, C. A. S. (2006) Wood Modification-Chemical, Thermal and other Processes. John Wiley & Sons, 260pp.
Holeček, T., M. Gašparík, R. Lagaňa, V. Borůvka and E. Oberhofnerová (2017) Measuring the modulus of elasticity of thermally treated spruce wood using the ultrasound and resonance methods. BioResources 12(1): 819-838.
Huang, Y. S., T. C. Hsiung, S. S Chen. (1990) The feasibility of FFT spectrum analysis by tap tone as applied to the quality evaluation of woods. Forest Product Industry 9(1): 43-54.
Jacob, J. and O. L. G. Barragán (2007) Flexural strengthening of glued laminated timber beams with steel and carbon fiber reinforced polymers. Master Thesis. Chalmers University of Technology. 152pp.
Johnson, G. R. and B. L. Gartner (2006) Genetic variation in basic density and modulus of elasticity of coastal Douglas-fir. Tree Genetics and Genomes 3(1): 25-33.
Krajcinovic, D. (1972) Sandwich beam analysis. Journal of Applied Mechanics 39(3): 773-778.
Liu, Y., B. Zwingmann and M. Schlaich (2015) Carbon fiber reinforced polymer for cable structures-A review. Polymers 7(10): 2078-2099.
Lu, H. R., A. E. Hanandeh and B. P. Gilbert (2017) A comparative life cycle study of alternative materials for Australian multi-storey apartment building frame constructions: Environmental and economic perspective. Journal of Cleaner Production 166: 458-473.
Mark, R. (1961) Wood-aluminum beams within and beyond the elastic range. Part Ⅰ: Rectangular sections. Forest Products Journal 11(10): 477-484.
Mark, R. (1963) Wood-aluminum beams within and beyond the elastic range. Part Ⅱ: Trapezoidal sections. Forest Products Journal 13(11): 508-516.
Mishiro, A. (1996) Effect of density on ultrasonic velocity in wood. Mokuzai Gakkaishi 42(9): 887-894.
Moaveni, S. (2015) Finite element analysis: Theory and application with ANSYS, Pearson Education. 936pp.
Monahan, J. and J. C. Powell (2011) An embodied carbon and energy analysis of modern methods of construction in housing: A case study using a lifecycle assessment framework. Energy and Buildings 43(1): 179-188.
Oudjenea, M., E. M. Meghlat, H. Ait-Aider, P. Lardeur, M. Khelifa and J. -L. Batoz (2018) Finite element modelling of the nonlinear load-slip behaviour of full-scale timber-to-concrete composite T-shaped beams. Composite Structures 196: 117-126.
Peterson, J. (1965) Wood beams prestressed with bonded tension elements. Journal of Structural Engineering 91(1): 103-119.
Qi, Y., H. Fang, H. Shi, W. Liu, Y. Qi and Y. Bai (2017) Bending performance of GFRP-wood sandwich beams with lattice-web reinforcement in flatwise and sidewise directions. Construction and Building Materials 156: 532-545.
Raftery, G. M. and A. M. Harte (2011) Low-grade glued laminated timber reinforced with FRP plate. Composites: Part B 42(4): 724-735.
Shi, H., W. Liu, H. Fang, Y. Bai and D. Hui (2017) Flexural responses and pseudo-ductile performance of lattice-web reinforced GFRP-wood sandwich beams. Composites Part B 108: 364-376.
Sliker, A. (1962) Reinforced wood laminated beams. Forest Products Journal 12(2): 91-96.
Smulski, S. J (1991) Relationship of stress wave and static bending determined properties of four northeastern hardwood. Wood and Fiber Science 23(1): 44-57.
Sobue, N. and K. Mizukami (1993) Resonance frequency of longitudinal vibration as a parameter for prediction of young's modulus of structural timbers. Journal of the Society of Materials Science 42: 121-125.
Triantafillou, T. C. and N. Deskovic (1992) Pretressed FRP sheets as external reinforcement of wood members. Journal of Structural Engineering 118(5): 1270-1284.
Wang, C. M. (1995) Timoshenko beam-bending solutions in terms of Euler-Bernoulli solutions. Journal of Engineering Mechanics 763-765.
Wang, S.. Y., C. J. Lin, C. M. Chiu, J. H. Chen and T. H. Yang (2005) Dynamic modulus of elasticity and bending properties of young Taiwania trees grown with different thinning and pruning treatments. Journal of Wood Science 51(1):1-6.
Werner, F. and K. Richter (2007) Wooden building products in comparative LCA-A Literature Review. The International Journal of Life Cycle Assessment 12(7): 470-479.
Whisler, D, A. Chen, H. Kim, P. Huson and R. Asaro (2012) Methodology for exciting dynamic shear and moment failure in composite sandwich beams. Journal of Sandwich Structures and Materials 14(4): 365-396.
Xu, P. (2002) Estimatimg the influence of knots on the local longitudinal stiffness in radiate pine structural timber. Wood Science and Technology 36(6): 501-509.
Yahyaei-Moayyed, M. and F. Taheri (2011) Experimental and computational investigations into creep response of AFRP reinforced timber beams. Composite Structures 93(2): 616-628.
Young, D. and R. P. Felgar (1949) Tables of charcteristic funtions representing normal modes of vibration of a beam. University of Texas. 31pp.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/70734-
dc.description.abstract本研究利用臺灣櫸(Zelkova serrata)做為柳杉(Cryptomeria japonica)實尺寸結構用材之補強材料,以目視分等、應力波法及抗彎彈性模數試驗進行膠合單元之評估,計算出膠合樑之抗彎彈性模數預測值(Ebp),配置後膠合成膠合樑進行抗彎強度性質、膠合剪斷性質、剝離性質及縱向壓縮強度性質之分析與評估。
利用測量出之膠合單元抗彎彈性模數(MOE),進行強度配置後,以彎曲剛性(EI)相等之原則,計算以各層膠合單元配置過後膠合樑之Ebp,與抗彎彈性模數實驗值(Ebo)做相關性分析,其R2值為0.74,具有顯著正相關,代表預測值具有參考價值,可達到預測效果。
抗彎試驗結果顯示,若只考慮抗彎強度(MOR)時,以17 mm臺灣櫸補強於柳杉上側、以17 mm臺灣櫸補強於柳杉上下兩側及以23 mm臺灣櫸補強於柳杉上下兩側皆有顯著之強度,而以17 mm臺灣櫸補強於柳杉上側之試材,臺灣櫸體積占比最少,因此有最佳的成本效益,其Ebo為9.7 GPa,相較柳杉對照組提升了14.5%,MOR值為74.8 MPa,相較柳杉對照組提升了49.8%。而若只考慮Ebo時,僅有以17 mm臺灣櫸補強於柳杉上下兩側及以23 mm臺灣櫸補強於柳杉上下兩側獲得顯著之Ebo值,因此僅需使用以17 mm臺灣櫸補強於柳杉上下兩側就能獲得顯著之Ebo與MOR值,Ebo值為14.6 GPa,較柳杉對照組提升了29.2%,MOR值為79.3 MPa,較柳杉對照組提升了58.8%。另外,實大樑及小尺寸之相同比例試材,比較Ebo時,與本研究有相似之結果,但比較MOR時,實大梁以17 mm臺灣櫸補強於上方之試材有顯著強度,小尺寸試材則無差異。
膠合樑膠合性質方面,以CNS 11031標準檢驗,只有30.2%符合膠合剪斷標準,在煮沸剝離試驗中,本次膠合樑只適用 Ⅱ 及 Ⅲ 類使用環境。根據上述膠合剪斷試驗及煮沸剝離試驗結果,可發現本試驗膠合層之膠合性質不佳,推測原因與製程中單面佈膠、加壓不均及墊木過薄有關,也與材料本身收縮率差異過大以及臺灣櫸表面光滑具油脂有關。因此如要改善此現象,除了改善製程,應考慮將臺灣櫸先進行蒸煮製程,以增加表面性質,或者需替換其他尺寸安定性相似之材料。
於縱向壓縮試驗中,各組膠合樑之抗壓強度是無顯著差異的,而破壞模式依照ASTM D143-94大致分為5種,而因本試驗試材不同,破壞模式多出膠合層破壞型。
zh_TW
dc.description.abstractThe study showed Zelkova serrata as the reinforced material for Cryptomeria japonica structural material. First, we measured visual grading method, stress wave method and static bending test to evaluate the laminae. Next, the modulus of elasticity of prediction(Ebp)would be calculated to predict the bending stiffness of reinforced glulams. And the bending properties, shear properties, delaminating properties and longitudinal compressive properties were test as well, in order to analysis and evaluate the properties of the glulams.
The bending stiffness data would be calculated by using the modulus of elasticity (MOE)of laminae. The study learned that modulus of elasticity of reality(Ebo)increased when the Ebp increased, and the R2 value was 0.74, which meaned that we could easily predict Ebp based on Ebo.
The bending results indicated that using 17 mm Z. serrata reinforced on top side, using 17 mm Z. serrata reinforced both on top and bottom sides, using 23 mm Z. serrata reinforced both on top and bottom sides, had significant differences on reinforcing effect if we only considered about MOR. Among these three samples, sample that using 17 mm Z. serrata reinforced both on top side used the less Z. serrata, could lower the cost. Ebo in this sample were 9.7 GPa, which was 14.5% higher than C. japonica, and MOR were 74.8 MPa, which was 49.8% higher than C. japonica. But when we considered about Ebo and MOR, the bending results indicated that only using 17 mm and 23 mm Z. serrata reinforced both on top and bottom sides have significant differences on reinforcing effect. And compared to these two samples, using 17 mm Z. serrata reinforced both on top and bottom sides could lower the cost. Ebo in this sample were 14.6 GPa, which was 29.2% higher than C. japonica, and MOR were 79.3 MPa, which was 58.8% higher than C. japonica. Furthermore, the smaller samples had similiar result when we considered about Ebo and MOR.
Using CNS 11031 standard to evaluate the shear strength, wood failure percentage and delamination rate. The results revealed that some adhesive lines were incomplete. In the research, the reinforced materials only suit for type Ⅱ and type Ⅲ use environment. According to the results of the above-mentioned, it can be found that the gluing property of the test gluing layer is not good, and the reason is related to the glued process and the shrinkage of the material itself. Therefore, in order to improve this phenomenon, we could improved the process or replace other materials of similar dimensional stability.
Under longitudinal compression test, the longitudinal compressive properties in each samples did not have significant differences. Using ASTM D143-94 standard to observed the types of failure in longitudinal compression. There were 5 kinds of failure types, including the type that break at the adhesive line.
en
dc.description.provenanceMade available in DSpace on 2021-06-17T04:36:33Z (GMT). No. of bitstreams: 1
ntu-107-R05625013-1.pdf: 3483114 bytes, checksum: fe1d22703fa8da2714459a651e6f4ffe (MD5)
Previous issue date: 2018
en
dc.description.tableofcontents第一章、前言 1
第二章、文獻回顧 3
2.1柳杉 3
2.2臺灣櫸 3
2.3木構造建築概論 3
2.3.1木構造建築之特點 4
2.3.2木構造建築系統類別 6
2.3.2.1木造軸組構法 6
2.3.2.2其他構造工法 7
2.4木樑概論 7
2.4.1樑理論(Beam theory) 8
2.4.2 夾層理論(Sandwich theory) 9
2.5木樑補強方法 11
2.5.1金屬補強 11
2.5.2 纖維強化複合材料(FRP)補強 12
2.5.2.1碳纖維強化複合材料(CFRP)補強 12
2.5.2.2玻璃纖維強化複合材料(GFRP)補強 14
2.5.2.3芳綸纖維強化複合材料(AFRP)補強 15
2.5.3夾層樑補強 15
2.5.4 其他方式補強 16
第三章、材料與方法 17
3.1試驗材料 17
3.1.1 木材 17
3.1.2 膠合劑 18
3.2試驗流程 19
3.3膠合單元試驗 21
3.3.1密度檢測 21
3.3.2含水率檢測 22
3.3.3目視分等 23
3.3.4應力波試驗 24
3.3.5抗彎彈性模數試驗 25
3.4膠合單元配置 27
3.5膠合樑膠合 29
3.6膠合樑之性質檢測 30
3.6.1抗彎強度試驗 30
3.6.3剝離試驗 31
3.6.3.1浸水剝離試驗 31
3.6.3.2煮沸剝離試驗 31
3.6.4尺寸收縮率試驗 32
3.6.5縱向壓縮強度試驗 33
3.7統計分析 34
第四章、結果與討論 35
4.1膠合單元性質 35
4.1.1密度(Density) 35
4.1.2含水率(Moisture content, MC) 36
4.1.3目視分等 37
4.1.4應力波波速(V)與動彈性模數(DMOE) 38
4.1.5抗彎彈性模數(MOE) 39
4.2膠合單元各項性質之關係 42
4.2.1密度與應力波傳遞速度之關係 42
4.2.2密度與彈性模數(DMOE與MOE)之關係 43
4.2.3目視分等與彈性模數(DMOE與MOE)之關係 45
4.2.4應力波波速(V)與MOE之關係 47
4.2.5 DMOE與MOE之比較分析 48
4.3膠合樑之抗彎性質 52
4.3.1抗彎彈性模數預測值(Ebp)及抗彎彈性模數實驗值(Ebo)結果 52
4.3.2抗彎強度(MOR)結果 52
4.3.3抗彎彈性模數預測值(Ebp)及抗彎彈性模數實驗值(Ebo)之關係 54
4.3.4抗彎彈性模數實驗值(Ebo)與抗彎強度(MOR)之比較分析 58
4.3.5 比較小尺寸及實大樑之抗彎性質差異 62
4.4膠合剪斷性質 65
4.5剝離性質 69
4.5.1浸水剝離性質 69
4.5.2煮沸剝離性質 69
4.6尺寸收縮率試驗 73
4.7縱向壓縮強度性質 75
第五章、結論 81
參考文獻 83
dc.language.isozh-TW
dc.subject膠合樑zh_TW
dc.subject補強zh_TW
dc.subject柳杉zh_TW
dc.subject臺灣櫸zh_TW
dc.subject結構用材zh_TW
dc.subjectCryptomeria japonicaen
dc.subjectReinforcementen
dc.subjectGlulamsen
dc.subjectStructural materialen
dc.subjectZelkova serrataen
dc.title以臺灣櫸作為柳杉結構材之補強材料探討zh_TW
dc.titleThe Study on Taiwan zelkova as Reinforcement Material in Structural Lumber of Japanese cedaren
dc.typeThesis
dc.date.schoolyear106-2
dc.description.degree碩士
dc.contributor.oralexamcommittee羅盛峰,莊閔傑,張豐丞
dc.subject.keyword臺灣櫸,柳杉,補強,膠合樑,結構用材,zh_TW
dc.subject.keywordZelkova serrata,Cryptomeria japonica,Reinforcement,Glulams,Structural material,en
dc.relation.page91
dc.identifier.doi10.6342/NTU201802682
dc.rights.note有償授權
dc.date.accepted2018-08-09
dc.contributor.author-college生物資源暨農學院zh_TW
dc.contributor.author-dept森林環境暨資源學研究所zh_TW
顯示於系所單位:森林環境暨資源學系

文件中的檔案:
檔案 大小格式 
ntu-107-1.pdf
  未授權公開取用
3.4 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved