請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/70730
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 陳達仁 | |
dc.contributor.author | Jin-An Bao | en |
dc.contributor.author | 包晉安 | zh_TW |
dc.date.accessioned | 2021-06-17T04:36:25Z | - |
dc.date.available | 2023-08-14 | |
dc.date.copyright | 2018-08-14 | |
dc.date.issued | 2018 | |
dc.date.submitted | 2018-08-08 | |
dc.identifier.citation | [1] D. J. Hyun, H. Park, T. Ha, S. Park, and K. Jung, 'Biomechanical design of an agile, electricity-powered lower-limb exoskeleton for weight-bearing assistance,' Robotics and Autonomous Systems, vol. 95, pp. 181-195, 2017.
[2] J. E. Pratt, B. T. Krupp, C. J. Morse, and S. H. Collins, 'The RoboKnee: an exoskeleton for enhancing strength and endurance during walking,' in Robotics and Automation, 2004. Proceedings. ICRA'04. 2004 IEEE International Conference on, 2004, vol. 3, pp. 2430-2435: IEEE. [3] J. F. Veneman, R. Kruidhof, E. E. Hekman, R. Ekkelenkamp, E. H. Van Asseldonk, and H. Van Der Kooij, 'Design and evaluation of the LOPES exoskeleton robot for interactive gait rehabilitation,' IEEE Transactions on Neural Systems and Rehabilitation Engineering, vol. 15, no. 3, pp. 379-386, 2007. [4] M. Mihelj, T. Nef, and R. Riener, 'ARMin II-7 DoF rehabilitation robot: mechanics and kinematics,' in Robotics and Automation, 2007 IEEE International Conference on, 2007, pp. 4120-4125: IEEE. [5] H. Kazerooni, R. Steger, and L. Huang, 'Hybrid control of the Berkeley lower extremity exoskeleton (BLEEX),' The International Journal of Robotics Research, vol. 25, no. 5-6, pp. 561-573, 2006. [6] Y. Sankai, 'HAL: Hybrid assistive limb based on cybernics,' in Robotics research: Springer, 2010, pp. 25-34. [7] M. Cempini, S. M. M. De Rossi, T. Lenzi, N. Vitiello, and M. C. Carrozza, 'Self-alignment mechanisms for assistive wearable robots: A kinetostatic compatibility method,' IEEE Transactions on Robotics, vol. 29, no. 1, pp. 236-250, 2013. [8] A. Schiele and F. C. Van Der Helm, 'Kinematic design to improve ergonomics in human machine interaction,' IEEE Transactions on Neural Systems and Rehabilitation Engineering, vol. 14, no. 4, pp. 456-469, 2006. [9] J. L. Pons, Wearable robots: biomechatronic exoskeletons. John Wiley & Sons, 2008. [10] C. Carignan and M. Liszka, 'Design of an arm exoskeleton with scapula motion for shoulder rehabilitation,' in Advanced Robotics, 2005. ICAR'05. Proceedings., 12th International Conference on, 2005, pp. 524-531: IEEE. [11] T. Nef, M. Guidali, and R. Riener, 'ARMin III–arm therapy exoskeleton with an ergonomic shoulder actuation,' Applied Bionics and Biomechanics, vol. 6, no. 2, pp. 127-142, 2009. [12] M. Bottlang, S. Madey, C. Steyers, J. Marsh, and T. D. Brown, 'Assessment of elbow joint kinematics in passive motion by electromagnetic motion tracking,' Journal of Orthopaedic Research, vol. 18, no. 2, pp. 195-202, 2000. [13] A. Chiri et al., 'HANDEXOS: Towards an exoskeleton device for the rehabilitation of the hand,' in Intelligent Robots and Systems, 2009. IROS 2009. IEEE/RSJ International Conference on, 2009, pp. 1106-1111: IEEE. [14] M. Cempini et al., 'Kinematics and design of a portable and wearable exoskeleton for hand rehabilitation,' in Rehabilitation robotics (ICORR), 2013 IEEE international conference on, 2013, pp. 1-6: IEEE. [15] A. Schiele, 'An explicit model to predict and interpret constraint force creation in phri with exoskeletons,' in Robotics and Automation, 2008. ICRA 2008. IEEE International Conference on, 2008, pp. 1324-1330: IEEE. [16] T. Lenzi, N. Vitiello, S. M. M. De Rossi, S. Roccella, F. Vecchi, and M. C. Carrozza, 'NEUROExos: A variable impedance powered elbow exoskeleton,' in Robotics and Automation (ICRA), 2011 IEEE International Conference on, 2011, pp. 1419-1426: IEEE. [17] J. Beil and T. Asfour, 'New mechanism for a 3 DOF exoskeleton hip joint with five revolute and two prismatic joints,' in Biomedical Robotics and Biomechatronics (BioRob), 2016 6th IEEE International Conference on, 2016, pp. 787-792: IEEE. [18] C. J. Walsh, D. Paluska, K. Pasch, W. Grand, A. Valiente, and H. Herr, 'Development of a lightweight, underactuated exoskeleton for load-carrying augmentation,' in Robotics and Automation, 2006. ICRA 2006. Proceedings 2006 IEEE International Conference on, 2006, pp. 3485-3491: IEEE. [19] D. Koo, P. H. Chang, M. K. Sohn, and J.-h. Shin, 'Shoulder mechanism design of an exoskeleton robot for stroke patient rehabilitation,' in Rehabilitation Robotics (ICORR), 2011 IEEE International Conference on, 2011, pp. 1-6: IEEE. [20] A. H. Stienen, E. E. Hekman, F. C. Van Der Helm, and H. Van Der Kooij, 'Self-aligning exoskeleton axes through decoupling of joint rotations and translations,' IEEE Transactions on Robotics, vol. 25, no. 3, pp. 628-633, 2009. [21] R. Gopura, K. Kiguchi, and D. Bandara, 'A brief review on upper extremity robotic exoskeleton systems,' in Industrial and Information Systems (ICIIS), 2011 6th IEEE International Conference on, 2011, pp. 346-351: IEEE. [22] T. Bosch, J. van Eck, K. Knitel, and M. de Looze, 'The effects of a passive exoskeleton on muscle activity, discomfort and endurance time in forward bending work,' Applied ergonomics, vol. 54, pp. 212-217, 2016. [23] J. L. Herder, N. Vrijlandt, T. Antonides, M. Cloosterman, and P. L. Mastenbroek, 'Principle and design of a mobile arm support for people with muscular weakness,' Journal of rehabilitation research and development, vol. 43, no. 5, p. 591, 2006. [24] T. Rahman et al., 'Design and testing of a functional arm orthosis in patients with neuromuscular diseases,' IEEE Transactions on Neural Systems and Rehabilitation Engineering, vol. 15, no. 2, pp. 244-251, 2007. [25] Y.-Y. Lee and D.-Z. Chen, 'Determination of spring installation configuration on statically balanced planar articulated manipulators,' Mechanism and Machine Theory, vol. 74, pp. 319-336, 2014. [26] P. De Leva, 'Adjustments to Zatsiorsky-Seluyanov's segment inertia parameters,' Journal of biomechanics, vol. 29, no. 9, pp. 1223-1230, 1996. [27] S. Plagenhoef, F. G. Evans, and T. Abdelnour, 'Anatomical data for analyzing human motion,' Research quarterly for exercise and sport, vol. 54, no. 2, pp. 169-178, 1983. [28] P. Van Roy, J. Baeyens, D. Fauvart, R. Lanssiers, and J. Clarijs, 'Arthro-kinematics of the elbow: study of the carrying angle,' Ergonomics, vol. 48, no. 11-14, pp. 1645-1656, 2005. | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/70730 | - |
dc.description.abstract | 本論文提出了適用於開迴路裝置的外骨骼運動相容性理論。運動相容性理論可解決穿戴外骨骼時所造成的不適感。定義運動相容性為外骨骼不會對連接裝置造成不適感且外骨骼能允許穿戴部位執行穿戴前之運動。不適感是因有沿著裝置桿件軸向的力與力矩施加於裝置連接桿上,為解決不適感須使外骨骼連接桿與裝置連接桿之間沒有相對移動且外骨骼之重量須完全平衡。其中,為避免外骨骼連接桿與裝置連接桿間有相對移動,可將外骨骼連接桿與裝置連接桿視為同一桿件即沒有相對移動。為避免外骨骼與裝置連接桿之間有軸向力存在,外骨骼與裝置需藉由拉伸彈簧各自達成重力靜平衡。為使外骨骼能允許穿戴部位執行穿戴前之運動,則外骨骼之運動維度與自由度須涵蓋裝置之運動維度與自由度,於本論文中討論外骨骼與裝置之運動維度及自由度相等的情況。根據以上條件能得出適用於不同運動維度之裝置時所需的外骨骼接頭數量。
將運動相容性理論分別套用至(1)由位於同一平面的兩桿件及擁有與平面垂直的轉軸的單旋轉自由度的接頭組成的裝置、(2)由位於固定偏差角度的不同平面的兩桿件及擁有與平面垂直的轉軸的兩個旋轉自由度的接頭組成的裝置,以及(3)由位於可變偏差角度的不同平面的兩桿件及擁有兩個與平面垂直且一個與平面的相交線平行的轉軸的三個旋轉自由度的接頭組成的裝置,並得出分別適用之所需的外骨骼接頭數量、接頭安排規則,及可行接頭安排。(1) 由位於同一平面的兩桿件及擁有與平面垂直的轉軸的單旋轉自由度的接頭組成的裝置可以手肘無提攜角為例;(2) 由位於固定偏差角度的不同平面的兩桿件及擁有與平面垂直的轉軸的兩個旋轉自由度的接頭組成的裝置可以手肘有提攜角及固定偏差角度為例;(3) 由位於可變偏差角度的不同平面的兩桿件及擁有兩個與平面垂直且一個與平面的相交線平行的轉軸的三個旋轉自由度的接頭組成的裝置可以手肘有提攜角及可變偏差角為例。並分別驗證當三個例子之外骨骼與裝置均達到重力靜平衡時,於運動範圍內,外骨骼連接桿與裝置連接桿間的軸向力是否趨近於零,若趨近於零,則代表外骨骼不會對裝置造成不適感。 | zh_TW |
dc.description.abstract | The purpose of this thesis is to propose a kinematic compatibility of exoskeleton suits for open chain device. The theory of kinematic compatibility can eliminate discomfort caused by exoskeletons. We define the kinematic compatibility is that exoskeletons not only enable the device to perform its original motions but also won’t cause discomfort to the device. Discomfort is caused by the axial force and torque applying on the device links. To avoid discomfort, the relative motions between attached link of device and attachment link of exoskeleton has to be eliminated and the weight of exoskeleton has to be balanced. By letting attached link of device and attachment link of exoskeleton be the same link, the relative motions can be eliminated. To avoid axial force applying on device link, the weights of device and exoskeleton have to respectively achieve static balancing by tensional springs. The conditions to enable device to perform its original motions is the set of operating dimensions and the DOF of exoskeletons should cover the device. In this thesis, we discuss the situation that the set of operating dimensions of exoskeleton is the same as the device. Based on the above conditions, the needed number of exoskeleton joints for device with different operating dimensions can be obtained.
By respectively applying the kinematic compatibility to (1) device with two coplanar links and an axis perpendicular 1-R joint, (2) device with two non-coplanar, fixed deviation angle links and a 2-R joint with plane-perpendicular axes, and (3) device with two non-coplanar, variable deviation angle links and a 3-R joint with two plane-perpendicular axes and one parallel to the intersection line of planes axis, we can obtain the needed numbers of exoskeleton joint, rules of joint arrangement, and admissible joint arrangements for every kind of device. For the first kind of device, we take elbow without carrying angle as application; for the second of device, we take elbow with carrying angle and fixed deviation angle as application; for the third kind of device, we take elbow with carrying angle and variable deviation angle as application. Each application of device is verified whether the axial force approach to zero during the motions when both device and exoskeleton achieve static balancing. If the axial force approaches to zero, it means the exoskeleton won’t cause discomfort to the device. | en |
dc.description.provenance | Made available in DSpace on 2021-06-17T04:36:25Z (GMT). No. of bitstreams: 1 ntu-107-R05522637-1.pdf: 3168455 bytes, checksum: 9797c688591c7906bec860a54790f443 (MD5) Previous issue date: 2018 | en |
dc.description.tableofcontents | 中文摘要 I
ABSTRACT III Chapter 1 Introduction 1 1.1 Background 1 1.2 Overview of related works 2 1.3 Motivation and preview 6 Chapter 2 Kinematic Compatibility 10 2.1 Definition of kinematic compatibility 10 2.2 Conditions of performing motions 11 2.3 Conditions of eliminating discomfort 12 2.3.1 Eliminating relative motions between device and exoskeleton 13 2.3.2 Gravity balancing of device and exoskeleton 16 Chapter 3 Exoskeleton for device with two coplanar links and an axis perpendicular 1-R joint 18 3.1 Device with two coplanar links and an axis perpendicular 1-R joint 18 3.2 Rules of exoskeleton joint arrangement 19 3.3 Admissible joint series of exoskeleton 20 3.4 Application: elbow without carrying angle 21 3.4.1 Static balancing of device and exoskeleton 22 3.4.2 Verification of discomfort by axial force 27 Chapter 4 Exoskeleton for device with two non-coplanar, fixed deviation angle links and a 2-R joint with plane-perpendicular axes 30 4.1. Device with two non-coplanar, fixed deviation angle links and a 2-R joint with plane-perpendicular axes 30 4.2. Distribution of exoskeleton DOFs 32 4.3. Rules of exoskeleton joint arrangement 33 4.4. Admissible joint series of exoskeleton 34 4.5. Constraint of the link connecting cohesion joints 35 4.6. Application: elbow with carrying angle and fixed deviation angle 37 4.6.1 Static balancing of device and exoskeleton 39 4.6.2 Verification of discomfort by axial force axial force 43 Chapter 5 Exoskeleton for device with two non-coplanar, variable deviation angle links and a 3-R joint with two plane-perpendicular axes and one parallel to the intersection line of planes axis 47 5.1 Device with two non-coplanar, variable deviation angle links and a 3-R joint with two plane-perpendicular axes and one parallel to the intersection line of planes axis 47 5.2 Rules of exoskeleton joint arrangement and admissible joint series of exoskeleton 49 5.3 Application: elbow with carrying angle and variable deviation angle 51 5.3.1 Optimization of spring installation of device 53 5.3.2 Optimization of spring installation of exoskeleton 58 Chapter 6 Conclusion 70 Reference 72 | |
dc.language.iso | en | |
dc.title | 具運動相容性之重力靜平衡外骨骼合成 | zh_TW |
dc.title | Synthesis of Kinematic Compatible Gravity Balanced Exoskeletons | en |
dc.type | Thesis | |
dc.date.schoolyear | 106-2 | |
dc.description.degree | 碩士 | |
dc.contributor.oralexamcommittee | 林正平,林鎮洲 | |
dc.subject.keyword | 外骨骼,運動相容性,不適感,重力靜平衡,手肘, | zh_TW |
dc.subject.keyword | exoskeleton,kinematic compatibility,discomfort,static balancing,elbow, | en |
dc.relation.page | 74 | |
dc.identifier.doi | 10.6342/NTU201802764 | |
dc.rights.note | 有償授權 | |
dc.date.accepted | 2018-08-09 | |
dc.contributor.author-college | 工學院 | zh_TW |
dc.contributor.author-dept | 機械工程學研究所 | zh_TW |
顯示於系所單位: | 機械工程學系 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-107-1.pdf 目前未授權公開取用 | 3.09 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。