請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/70722完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 孔令傑(Ling-Chieh Kung) | |
| dc.contributor.author | Ching-Chieh Lin | en |
| dc.contributor.author | 林敬傑 | zh_TW |
| dc.date.accessioned | 2021-06-17T04:36:08Z | - |
| dc.date.available | 2020-08-15 | |
| dc.date.copyright | 2018-08-15 | |
| dc.date.issued | 2018 | |
| dc.date.submitted | 2018-08-08 | |
| dc.identifier.citation | Ahuja, R. K, M. Kodialam, A. K. Mishra, J. B Orlin. 1997. Computational investigations
of maximum flow algorithms. European Journal of Operational Research 97(3) 509–542. Arnott, R. 1996. Taxi travel should be subsidized. Journal of Urban Economics 40(3) 316–333. Arslan, G., J. R. Marden, J. S. Shamma. 2007. Autonomous vehicle-target assignment: A game-theoretical formulation. Journal of Dynamic Systems, Measurement, and Control 129(5) 584–596. Boyac, B., K. G. Zografos, N. Geroliminis. 2017. An integrated optimization-simulation framework for vehicle and personnel relocations of electric carsharing systems with reservations. Transportation Research Part B: Methodological 95 214–237. Casas-Ramrez, M. S., J. F. Camacho-Vallejo, I. A. Martnez-Salazar. 2018. Approximating solutions to a bilevel capacitated facility location problem with customer’s patronization toward a list of preferences. Applied Mathematics and Computation 319 369–386. CBInsights. 2017. Autonomy is driving a surge of auto tech investment. https://www.cbinsights.com/research/, December 22, 2017. Cheriyan, J., S. N. Maheshwari. 1989. Analysis of preflow push algorithms for maximum network flow. SIAM Journal on Computing 18(6) 1057–1086. Dan, T., P. Marcotte. 2017. Competitive Facility Location with Selfish Users and Queues. Fagnant, D. J., K. Kockelman. 2015. Preparing a nation for autonomous vehicles: opportunities, barriers and policy recommendations. Transportation Research Part A:Policy and Practice 77 167–181. Frederick, H, G. J. Lieberman. 2010. Introduction to Operations Research. McGraw-Hill College. Gurvich, I., M. Lariviere, A. Moreno. 2016. Operations in the on-demand economy: Staffing services with self-scheduling capacity . Kung, L.-C., W.-H. Liao. 2017. An approximation algorithm for a competitive facility location problem with network effects. European Journal of Operational Research . Kung, L. C., G. Y. Zhong. 2017. The optimal pricing strategy for two-sided platform delivery in the sharing economy. Transportation Research Part E: Logistics and Transportation Review 101 1–12. Lanctot, R. 2017. Accelerating the future: The economic impact of the emerging passenger economy. Tech. rep., Strategy Analytics. Rochet, J. C., J. Tirole. 2006. Two-sided markets: a progress report. The RAND journal of economics 37(3) 645–667. Santi, P., G. Resta, M. Szell, S. Sobolevsky, S. H. Strogatz, C. Ratti. 2014. Quantifying the benefits of vehicle pooling with shareability networks. Proceedings of the National Academy of Sciences 111(37) 13290–13294. Shreiber, C. 1975. The economic reasons for price and entry regugation of taxicabs. Journal of Transport Economics and Policy 268–279. Wong, K. I., S. C. Wong, H. Yang, J. H. Wu. 2008. Modeling urban taxi services with multiple user classes and vehicle modes. Transportation Research Part B: Methodological 42(10) 985–1007. Yang, H, C. S. Fung, K. I. Wong, S. C. Wong. 2010. Nonlinear pricing of taxi services. Transportation Research Part A: Policy and Practice 44(5) 337–348. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/70722 | - |
| dc.description.abstract | 現今有許多新型態的運輸服務,共享經濟和無人車都是當今十分熱門的新
型態的運輸服務。在本篇研究中,我們討論運輸服務提供者考量提供共乘服務或無人車服務來成為其商業模式。在各項模式中,有許多營運類的決策如定價,補貼,以及車輛數量等,以及一些策略行的決策如無人車站點佈建。我們研究了不同服務下運輸提供者的最適策略,並比較了兩種不同的模式下對服務提供者獲利的差別。在研究中,我們發現無人車服務較共乘服務更具規模經濟,在最適策略下,價格反而會與成本成反比。在這篇研究中,同時也提供了一個最適演算法來計算最佳的無人車站點佈置位置,並且提供時間複雜度的分析,來最佳化運輸服務提供著的最適策略。 | zh_TW |
| dc.description.abstract | Transportation service is rapidly changing in the past few decades. On one hand, ride-sharing services in the sharing economy impact the transportation industry. On the other hand, autonomous vehicles may also revolutionize transportation services. We consider a transportation service provider choosing between offering ride-sharing services or autonomous vehicle services. For each service mode, we derive its optimal prices, subsidies, revenue sharing proportions, the quantity of vehicle deployment, and service location selection. A comparison between these two modes is then conducted. We find that the autonomous vehicle service is more profitable than the ride-sharing one under the economy of scale. Interestingly, the optimal service price decreases in the cost of deploying autonomous vehicles. Our study thus sheds lights in the choice of quality incentive and price incentive and also provide a proper algorithm and time-complexity analysis for an autonomous vehicle service station location selection problem. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-17T04:36:08Z (GMT). No. of bitstreams: 1 ntu-107-R05725007-1.pdf: 1011657 bytes, checksum: 087ffd08b4ca452334b94679bf453655 (MD5) Previous issue date: 2018 | en |
| dc.description.tableofcontents | 1 Introduction 1
1.1 Background and Motivation 1 1.2 Research Objectives 2 1.3 Research Plan 3 2 Literature Review 5 2.1 Autonomous Vehicle Service 5 2.2 Bi-level Modelling and Facility Location Problem 6 2.3 Ride-sharing Research 7 3 Problem Description and Formulation 9 3.1 Overview 9 3.2 Construction Problem 10 3.3 Operational Decision Problem 11 3.3.1 Consumer 12 3.3.2 Driver 13 3.3.3 Transportation Service Provider13 4 Model Selection with No Construction Cost 15 4.1 Overview 15 4.2 Baseline Model 16 4.2.1 Ride-sharing Service 16 4.2.2 Autonomous Vehicle Service 17 4.2.3 Service Type Decision Analysis 18 4.3 Social Welfare Maximization Comparison 18 4.4 Extension Model 20 4.4.1 The Dispersion Degree of Consumers Type 20 4.4.2 The Marginal Effect Diminishing Rate of Adding Vehicles 22 5 Location Decision with Construction Cost 23 5.1 Overview 23 5.2 Location Problem Analysis 24 5.2.1 Time Complexity Analysis 26 5.2.2 Special Case Analysis 26 6 Conclusion and Future Work 29 6.1 Conclusion 29 6.2 Future Work 30 A Proof of Propositions 31 | |
| dc.language.iso | en | |
| dc.subject | 共享經濟 | zh_TW |
| dc.subject | 無人車 | zh_TW |
| dc.subject | 服務模式選擇 | zh_TW |
| dc.subject | 賽局理論 | zh_TW |
| dc.subject | 設施佈建問題 | zh_TW |
| dc.subject | facility location problem | en |
| dc.subject | autonomous vehicle | en |
| dc.subject | service mode selection | en |
| dc.subject | sharing economy | en |
| dc.subject | game theory | en |
| dc.title | 以賽局理論探討無人車與共乘服務之營運 | zh_TW |
| dc.title | A Game-theoretic Investigation of the Operations of Autonomous Vehicle Services and Ride-sharing Services | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 106-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 魏志平(Chih-Ping Wei),黃奎隆(Kwei-Long Huang) | |
| dc.subject.keyword | 共享經濟,無人車,服務模式選擇,賽局理論,設施佈建問題, | zh_TW |
| dc.subject.keyword | sharing economy,autonomous vehicle,service mode selection,game theory,facility location problem, | en |
| dc.relation.page | 37 | |
| dc.identifier.doi | 10.6342/NTU201802705 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2018-08-09 | |
| dc.contributor.author-college | 管理學院 | zh_TW |
| dc.contributor.author-dept | 資訊管理學研究所 | zh_TW |
| 顯示於系所單位: | 資訊管理學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-107-1.pdf 未授權公開取用 | 987.95 kB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
