請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/70703
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 黃彥婷(Yen-Ting Hwang) | |
dc.contributor.author | I-Han Tseng | en |
dc.contributor.author | 曾翊涵 | zh_TW |
dc.date.accessioned | 2021-06-17T04:35:29Z | - |
dc.date.available | 2021-08-16 | |
dc.date.copyright | 2018-08-16 | |
dc.date.issued | 2018 | |
dc.date.submitted | 2018-08-09 | |
dc.identifier.citation | Adam, O., T. Bischoff and T. Schneider (2016). 'Seasonal and interannual variations of the energy flux equator and ITCZ. Part I: Zonally averaged ITCZ position.' Journal of Climate 29(9): 3219-3230.
Allen, M. R. and W. J. Ingram (2002). 'Constraints on future changes in climate and the hydrologic cycle.' Nature 419(6903): 224. Andrews, T., J. M. Gregory and M. J. Webb (2015). 'The Dependence of Radiative Forcing and Feedback on Evolving Patterns of Surface Temperature Change in Climate Models.' Journal of Climate 28(4): 1630-1648. Andrews, T. and M. J. Webb (2018). 'The dependence of global cloud and lapse rate feedbacks on the spatial structure of Tropical Pacific warming.' Journal of Climate 31(2): 641-654. Bellomo, K., L. N. Murphy, M. A. Cane, A. C. Clement and L. M. Polvani (2017). 'Historical forcings as main drivers of the Atlantic multidecadal variability in the CESM large ensemble.' Climate Dynamics: 1-12. Bintanja, R., E. Van der Linden and W. Hazeleger (2012). 'Boundary layer stability and Arctic climate change: a feedback study using EC-Earth.' Climate dynamics 39(11): 2659-2673. Bony, S., G. Bellon, D. Klocke, S. Sherwood, S. Fermepin and S. Denvil (2013). 'Robust direct effect of carbon dioxide on tropical circulation and regional precipitation.' Nature Geoscience 6(6): 447-451. Ceppi, P. and J. M. Gregory (2017). 'Relationship of tropospheric stability to climate sensitivity and Earth’s observed radiation budget.' Proceedings of the National Academy of Sciences: 201714308. Chadwick, R., I. Boutle and G. Martin (2013). 'Spatial patterns of precipitation change in CMIP5: Why the rich do not get richer in the tropics.' Journal of Climate 26(11): 3803-3822. Chou, C. and J. D. Neelin (2004). 'Mechanisms of global warming impacts on regional tropical precipitation.' Journal of climate 17(13): 2688-2701. Chou, C., J. D. Neelin, C.-A. Chen and J.-Y. Tu (2009). 'Evaluating the “rich-get-richer” mechanism in tropical precipitation change under global warming.' Journal of Climate 22(8): 1982-2005. Chung, E.-S. and B. J. Soden (2017). 'Hemispheric climate shifts driven by anthropogenic aerosol–cloud interactions.' Nature Geoscience 10(8): 566. Deser, C., A. Phillips, V. Bourdette and H. Teng (2012). 'Uncertainty in climate change projections: the role of internal variability.' Climate dynamics 38(3-4): 527-546. Donohoe, A., J. Marshall, D. Ferreira and D. Mcgee (2013). 'The relationship between ITCZ location and cross-equatorial atmospheric heat transport: From the seasonal cycle to the Last Glacial Maximum.' Journal of Climate 26(11): 3597-3618. Ferreira, D., J. Marshall, C. M. Bitz, S. Solomon and A. Plumb (2015). 'Antarctic Ocean and sea ice response to ozone depletion: A two-time-scale problem.' Journal of Climate 28(3): 1206-1226. Frölicher, T. L., J. L. Sarmiento, D. J. Paynter, J. P. Dunne, J. P. Krasting and M. Winton (2015). 'Dominance of the Southern Ocean in anthropogenic carbon and heat uptake in CMIP5 models.' Journal of Climate 28(2): 862-886. Frierson, D. M. and Y.-T. Hwang (2012). 'Extratropical influence on ITCZ shifts in slab ocean simulations of global warming.' Journal of Climate 25(2): 720-733. Held, I. M. and B. J. Soden (2006). 'Robust responses of the hydrological cycle to global warming.' Journal of climate 19(21): 5686-5699. Held, I. M., M. Winton, K. Takahashi, T. Delworth, F. Zeng and G. K. Vallis (2010). 'Probing the fast and slow components of global warming by returning abruptly to preindustrial forcing.' Journal of Climate 23(9): 2418-2427. Hu, Y. and Q. Fu (2007). 'Observed poleward expansion of the Hadley circulation since 1979.' Atmospheric Chemistry and Physics 7(19): 5229-5236. Huang, P., S.-P. Xie, K. Hu, G. Huang and R. Huang (2013). 'Patterns of the seasonal response of tropical rainfall to global warming.' Nature Geoscience 6(5): 357-361. Huber, M. and R. Knutti (2014). 'Natural variability, radiative forcing and climate response in the recent hiatus reconciled.' Nature Geoscience 7(9): 651. Hwang, Y. T., D. M. Frierson and S. M. Kang (2013). 'Anthropogenic sulfate aerosol and the southward shift of tropical precipitation in the late 20th century.' Geophysical Research Letters 40(11): 2845-2850. IPCC (2013). Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge, United Kingdom and New York, NY, USA, Cambridge University Press. IPCC (2013). Summary for Policymakers. Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. T. F. Stocker, D. Qin, G.-K. Plattner et al. Cambridge, United Kingdom and New York, NY, USA, Cambridge University Press: 1–30. Kang, S. M., D. M. Frierson and I. M. Held (2009). 'The tropical response to extratropical thermal forcing in an idealized GCM: The importance of radiative feedbacks and convective parameterization.' Journal of the atmospheric sciences 66(9): 2812-2827. Kang, S. M., I. M. Held, D. M. W. Frierson and M. Zhao (2008). 'The response of the ITCZ to extratropical thermal forcing: Idealized slab-ocean experiments with a GCM.' Journal of Climate 21(14): 3521-3532. Kay, J., C. Deser, A. Phillips, A. Mai, C. Hannay, G. Strand, J. Arblaster, S. Bates, G. Danabasoglu and J. Edwards (2015). 'The Community Earth System Model (CESM) large ensemble project: A community resource for studying climate change in the presence of internal climate variability.' Bulletin of the American Meteorological Society 96(8): 1333-1349. Knutti, R. and J. Sedláček (2013). 'Robustness and uncertainties in the new CMIP5 climate model projections.' Nature Climate Change 3(4): 369. Lau, W. K. and K.-M. Kim (2015). 'Robust Hadley Circulation changes and increasing global dryness due to CO2 warming from CMIP5 model projections.' Proceedings of the National Academy of Sciences 112(12): 3630-3635. Liu, Z., S. Vavrus, F. He, N. Wen and Y. Zhong (2005). 'Rethinking tropical ocean response to global warming: The enhanced equatorial warming.' Journal of Climate 18(22): 4684-4700. Lu, J., G. A. Vecchi and T. Reichler (2007). 'Expansion of the Hadley cell under global warming.' Geophysical Research Letters 34(6). Ma, J. and S.-P. Xie (2013). 'Regional patterns of sea surface temperature change: A source of uncertainty in future projections of precipitation and atmospheric circulation.' Journal of Climate 26(8): 2482-2501. McFarlane, A. A. and D. M. Frierson (2017). 'The role of ocean fluxes and radiative forcings in determining tropical rainfall shifts in RCP8. 5 simulations.' Geophysical Research Letters 44(16): 8656-8664. Meehl, G. A. and W. M. Washington (1996). 'El Niño-like climate change in a model with increased atmospheric CO2 concentrations.' Nature 382(6586): 56. Neelin, J. D., M. Münnich, H. Su, J. E. Meyerson and C. E. Holloway (2006). 'Tropical drying trends in global warming models and observations.' Proceedings of the National Academy of Sciences 103(16): 6110-6115. Peings, Y., J. Cattiaux, S. Vavrus and G. Magnusdottir (2017). 'Late twenty-first-century changes in the midlatitude atmospheric circulation in the CESM large ensemble.' Journal of Climate 30(15): 5943-5960. Pendergrass, A. G., A. Conley and F. M. Vitt (2018). 'Surface and top-of-atmosphere radiative feedback kernels for CESM-CAM5.' Earth System Science Data 10(1): 317. Pithan, F. and T. Mauritsen (2014). 'Arctic amplification dominated by temperature feedbacks in contemporary climate models.' Nature Geoscience 7(3): 181. Riahi, K., A. Grübler and N. Nakicenovic (2007). 'Scenarios of long-term socio-economic and environmental development under climate stabilization.' Technological Forecasting and Social Change 74(7): 887-935. Roemmich, D., J. Church, J. Gilson, D. Monselesan, P. Sutton and S. Wijffels (2015). 'Unabated planetary warming and its ocean structure since 2006.' Nature climate change 5(3): 240. Screen, J. A., C. Deser, D. M. Smith, X. Zhang, R. Blackport, P. J. Kushner, T. Oudar, K. E. McCusker and L. Sun (2018). 'Consistency and discrepancy in the atmospheric response to Arctic sea-ice loss across climate models.' Nature Geoscience: 1. Screen, J. A. and I. Simmonds (2010). 'Increasing fall‐winter energy loss from the Arctic Ocean and its role in Arctic temperature amplification.' Geophysical Research Letters 37(16). Seo, J., S. M. Kang and T. M. Merlis (2017). 'A model intercomparison of the tropical precipitation response to a CO2 doubling in aquaplanet simulations.' Geophysical Research Letters 44(2): 993-1000. Simmonds, I. (2015). 'Comparing and contrasting the behaviour of Arctic and Antarctic sea ice over the 35 year period 1979-2013.' Annals of Glaciology 56(69): 18-28. Soden, B. J., I. M. Held, R. Colman, K. M. Shell, J. T. Kiehl and C. A. Shields (2008). 'Quantifying climate feedbacks using radiative kernels.' Journal of Climate 21(14): 3504-3520. Stroeve, J. C., V. Kattsov, A. Barrett, M. Serreze, T. Pavlova, M. Holland and W. N. Meier (2012). 'Trends in Arctic sea ice extent from CMIP5, CMIP3 and observations.' Geophysical Research Letters 39(16). Tomas, R. A., C. Deser and L. Sun (2016). 'The role of ocean heat transport in the global climate response to projected Arctic sea ice loss.' Journal of Climate 29(19): 6841-6859. Vecchi, G. A. and B. J. Soden (2007). 'Effect of remote sea surface temperature change on tropical cyclone potential intensity.' Nature 450(7172): 1066. Wang, H., S.-P. Xie and Q. Liu (2016). 'Comparison of climate response to anthropogenic aerosol versus greenhouse gas forcing: distinct patterns.' Journal of Climate 29(14): 5175-5188. Wang, M. and J. E. Overland (2012). 'A sea ice free summer Arctic within 30 years: An update from CMIP5 models.' Geophysical Research Letters 39(18). Xie, S.-P., C. Deser, G. A. Vecchi, J. Ma, H. Teng and A. T. Wittenberg (2010). 'Global warming pattern formation: Sea surface temperature and rainfall.' Journal of Climate 23(4): 966-986. Xie, S.-P., B. Lu and B. Xiang (2013). 'Similar spatial patterns of climate responses to aerosol and greenhouse gas changes.' Nature Geoscience 6(10): 828-832. Yim, B. Y., S.-W. Yeh and J.-S. Kug (2017). 'Inter-model diversity of Arctic amplification caused by global warming and its relationship with the Inter-tropical Convergence Zone in CMIP5 climate models.' Climate Dynamics 48(11-12): 3799-3811. Ying, J., P. Huang and R. Huang (2016). 'Evaluating the formation mechanisms of the equatorial Pacific SST warming pattern in CMIP5 models.' Advances in Atmospheric Sciences 33(4): 433-441. Zelinka, M. D., K. M. Grise, S. A. Klein, C. Zhou, A. M. DeAngelis and M. W. Christensen (2018). 'Drivers of the Low Cloud Response to Poleward Jet Shifts in the North Pacific in Observations and Models.' Journal of Climate(2018). | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/70703 | - |
dc.description.abstract | 本研究是利用美國國家大氣研究中心的一項計畫中,使用單一大氣海洋耦合模式及系集,模擬多組過去以及未來100年的人為造成的氣候情境。此研究中,主要針對熱帶的降雨以及環流改變進行時間以及空間上的分析。
熱帶降雨可分別定義為兩種隨時間變化的指數,(1)降雨最大值所在的緯度,以及(2)熱帶降雨重心。上述兩種降雨指數在時序分析中,有非常不同的表現。在1990年代以前,降雨最大值的緯度沒有明顯改變,而後,因為暖化下赤道地區暖化程度高於周圍區域,使此降雨指數有明顯往赤道區域靠近的趨勢。然而,熱帶降雨重心卻是受到南北半球降雨不對稱改變的影響。在20世紀時,北半球發展中國家大量排放氣膠粒子,造成北半球明顯冷卻,使降雨重心南移。而後,受到溫室氣體大量排放的影響,使北半球暖化較為劇烈,降雨重心往北移。然而,在21世紀末期,即使仍在強烈暖化的氣候情境中,降雨重心仍再次往南移。暖化下,此降雨之非線性現象,可以為前人所提出的能量觀點所解釋:(1)當北極海冰融完並使暖化速率減緩,以及(2)南大洋加速暖化,熱帶環流會趨向產生一跨赤道環流,使南半球變濕,北半球變乾。詳細的歸因分析後,更發現短波雲的輻射效應扮演重要角色,其放大了半球間能量的不對稱,並使熱帶環流產生調整。 本研究中,發現降雨的改變存在著複雜的時間以及區域上的改變,值得更多深入的研究。 | zh_TW |
dc.description.abstract | In this work, we investigate the temporal evolution of the anthropogenic forced tropical precipitation and circulation using CESM Large Ensemble Project’s historical and RCP 8.5 simulations. An intertropical convergence zone (ITCZ) index and a precipitation centroid (PC) index are defined to quantify the meridional displacement of the zonal mean rainfall peak and the overall tropical precipitation pattern, respectively. Both indices show complex transient responses but different turning points in their time series. The ITCZ initially has no significant movement, but begins to shift southward toward the equator, which warms more significantly than the surrounding subtropical ocean after the 1990s. On the other hand, the PC first shifts southward when aerosols cool the Northern Hemisphere during the 20th century, and then shifts northward after year 2000 when greenhouse gases (GHGs) warming is larger in the Northern than the Southern Hemisphere. As GHG concentrations continue to increase, the PC shifts southward again after 2067. This nonlinear response of the PC shift to increasing GHGs can be interpreted through an energetic framework: as (1) the Arctic becomes ice-free and its warming rate reduces, and (2) the Southern Ocean warming rate increases, the associated hemispheric asymmetric Hadley Cell response leads to drying in the northern tropics and moistening in the southern tropics. Detailed attribution analyses further suggest that the shortwave cloud feedback plays an important role in amplifying the hemispheric asymmetry and leading to the structural changes in Hadley circulation. Our results highlight the complex temporal and spatial structures of the anthropogenic forced precipitation changes. | en |
dc.description.provenance | Made available in DSpace on 2021-06-17T04:35:29Z (GMT). No. of bitstreams: 1 ntu-107-R05229013-1.pdf: 5012140 bytes, checksum: 2b8e7d95417e25ef89a6c9a653e255a2 (MD5) Previous issue date: 2018 | en |
dc.description.tableofcontents | 摘要 …….…………………………………………………………………………… III
Abstract ………………………………………………………………………………. IV Figure Captions ………………………………………………………………………… 6 1. Introduction …………………………………………………….………………. 10 1.1 Background for Spatial Variability: Mechanisms of Tropical Precipitation Changes ……………………………………………………………………… 10 1.2 Background for Temporal Variability: Challenges of Understanding Decadal-Timescale Variability ………………………………………………………… 12 2. Method ………………………………………………………………………….. 16 2.1 Data ………….……………………………………………………………… 16 2.2 Precipitation Indices ………………………………………………………… 16 2.3 Dynamic and Thermodynamic Precipitation ………………………………… 18 2.4 Energy Budget and Kernels ……………………………………………….. 18 2.5 The Equatorial Enhanced Response (EER) Index ……………………………. 21 2.6 Turning of Indices …………………………………………………………… 21 2.7 Trend Map and the Cut Off in 2080 …………………………………………… 22 3. Results ……………………………………………………………………………. 23 3.1 Wet-get-wetter ………………………………………………………………… 24 3.2 Warmer-get-wetter …………………………………………………………… 25 3.3 The Energetic Framework …………………………………………………… 26 3.4 Structural Change of Hadley Circulation …………………………………… 35 4. Conclusion and Discussion ……………………………………………………… 37 References ……………….…………………………………………………………… 40 Figures ………………………………………………………………………………… 47 Supplementary ………………………………………………………………………… 62 Supplementary Figures and Tables…………………………………………………… 66 | |
dc.language.iso | en | |
dc.title | 人為氣候變遷所致熱帶降雨空間分佈隨時間之變化 | zh_TW |
dc.title | The Temporal Evolution of the Tropical Precipitation Patterns under Anthropogenic Climate Change | en |
dc.type | Thesis | |
dc.date.schoolyear | 106-2 | |
dc.description.degree | 碩士 | |
dc.contributor.oralexamcommittee | 林和(Ho Lin),陳維婷(Wei-Ting Chen),余嘉裕(Jia-Yuh Yu) | |
dc.subject.keyword | 熱帶降雨,北極海冰,氣候模擬, | zh_TW |
dc.subject.keyword | tropical precipitation,CESM LE,energetic framework,ice-free Arctic, | en |
dc.relation.page | 70 | |
dc.identifier.doi | 10.6342/NTU201801627 | |
dc.rights.note | 有償授權 | |
dc.date.accepted | 2018-08-09 | |
dc.contributor.author-college | 理學院 | zh_TW |
dc.contributor.author-dept | 大氣科學研究所 | zh_TW |
顯示於系所單位: | 大氣科學系 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-107-1.pdf 目前未授權公開取用 | 4.89 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。