請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/70692完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 吳光鐘 | |
| dc.contributor.author | Man-Wen Luo | en |
| dc.contributor.author | 羅曼文 | zh_TW |
| dc.date.accessioned | 2021-06-17T04:35:07Z | - |
| dc.date.available | 2023-08-10 | |
| dc.date.copyright | 2018-08-10 | |
| dc.date.issued | 2018 | |
| dc.date.submitted | 2018-08-09 | |
| dc.identifier.citation | Ayatollahi, M., Monfared, M. M., (2012). 'Anti-plane transient analysis of planes with multiple cracks.' Mechanics of Materials 50, 36-46.
Chen, W., Tang, R., (1996). 'Cauchy singular integral equation method for transient antiplane dynamic problems.' Engineering Fracture Mechanics 54(2), 177-187. Cochard, A., Madariaga, R., (1994). 'Dynamic faulting under rate-dependent friction.' pure and applied geophysics 142(3), 419-445. Geubelle, P. H., Rice, J. R., (1995). 'A Spectral Method for Three-dimensional Elastodynamic Fracture Problems', J. Mech. Phsy. Solids, Vol. 43, No. 11, pp. 1791-1824. Ing, Y. S., Ma, C. C., (1997). 'Dynamic fracture analysis of a finite crack subjected to an incident horizontally polarized shear wave.' International Journal of Solids and Structures 34(8): 895-910. Loeber, J. F., Sih, G. C., (1968). 'Diffraction of Anti-plane Shear Waves by A Finite Crack', J.Acoustic. Soc. Am. Vol. 44, pp. 90-98. Miller, M. K., Guy, Jr. T., (1966). 'Numerical Inversion of the Laplace Transform by Use of Jacobi Polynomials.' SIAM Journal on Numerical Analysis 3(4), 624-635. Morrissey, J. W., Geubelle, P. H., (1997). 'A Numerical Scheme for Mode III Dynamic Fracture problems', Inernational Journal for Numerical Methods in Engineering, Vol. 40, pp. 1181-1196. Rice, J. R., Zheng, G., (1995). 'Self-healing Slip Pulse on A Frictional Surgace', J. Mech. Phsy. Solids, Vol. 43, No 9, pp. 1461-1495. Sih, G. C., (1977). Mechanics of Fracture, Vol. 4. Noordhoff, Leyden. Takakuda, K., Takizawa, Y., Koizumi, T., Shibuya, T., (1984). 'Dynamic Interactions Between Cracks : Diffractions of SH Waves which are Incident on Griffith Cracks in an Infinite Body.' Bulletin of JSME 27(234), 2605-2610. Wu, K. C., Chen, J. C., (2011). 'Transient analysis of collinear cracks under anti-plane dynamic loading.' Procedia Engineering 10, 924-929. Wu, K. C., Hou, Y. L., Huang, S. M., (2015). 'Transient analysis of multiple parallel cracks under anti-plane dynamic loading.' Mechanics of Materials 81, 56-61. Wu, K. C., Huang, S. M., Chen, S. H., (2013). 'Dynamic stress intensity factors of collinear cracks under a uniform tensile stress wave.' CMES. Comput. Model. Eng. Sci. 93, 133–148. Wu, K. C., (1999). 'Dynamic green’s functions for anisotropic materials under anti-plane deformation. ' J. Mech. 15, 11–16. 侯雨利(2011),非共線多裂縫受反平面荷重之動態分析,國立台灣大學應用力學研究所碩士論文。 陳靖淇(2009),第三型裂縫受動態荷重之分析,國立台灣大學應用力學研究所碩士論文。 | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/70692 | - |
| dc.description.abstract | 本文主要在探討於均勻(Homogeneous)的一無限線彈性(Linear Elastic)內之任意傾斜多裂縫,受反平面(Anti-plane)動態荷重之應力強度因子(Stress Intensity Factor)。
本文利用差排(Dislocation)分布模擬裂縫,建立裂縫平面上應力分布和差排密度的積分方程式。先將積分方程式做拉普拉斯積分轉換(Laplace Integration Transform),再使用高斯─柴比雪夫積分法(Gaussian-Chebyshev Integration Quadrature) 求解,將方程式進行離散,進而得到拉普拉斯轉換域之數值解形式。最後透過拉普拉斯逆變換(Laplace inverse Transform),計算每個裂縫尖端之應力強度因子。 本文計算了平行雙裂縫受傾斜平面應力波作用、單裂縫和平行雙裂縫受傾斜平面應力波作用之比較、任意傾斜裂縫受由法向量入射的水平剪力波的應力強度因子。由平行雙裂縫受傾斜平面應力波作用與傾斜且平行雙裂縫受由法向量入射的水平剪力波兩者的結果相互比較得知,本方法有極高的準確性。 | zh_TW |
| dc.description.abstract | The problem of a homogeneous linear elastic body containing arbitrary oriented cracks under anti-plane dynamic load is considered in this work.
Distribution of dislocations is used to simulate the cracks and derive the integral equation which relates to tractions on the crack planes. The integral equation in the Laplace transform domain is solved by Gaussian-Chebyshev integration quadrature. For each crack tip we calculate the stress intensity factor using a numerical inverse Laplace scheme. Specifically the cases studied include: two parallel cracks under an oriented plane stress wave; comparing a single crack with two cracks under an oriented plane stress wave; and multiple arbitrarily oriented cracks under the normal incidence of a plane horizontal shear stress wave. Comparison of the numerical results for two cracks under an oriented plane stress wave with multiple arbitrarily oriented cracks under the normal incidence of a plane horizontal shear stress wave shows that the present method is highly accurate. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-17T04:35:07Z (GMT). No. of bitstreams: 1 ntu-107-R05543010-1.pdf: 3025712 bytes, checksum: c27950c76874012e28446e5bab197402 (MD5) Previous issue date: 2018 | en |
| dc.description.tableofcontents | 目錄
摘要 I Abstract II 目錄 III 圖目錄 V 符號對照表 VIII 第一章 導論 1 1.1. 研究動機與文獻回顧 1 1.2. 論文架構 3 第二章 基本理論 4 2.1. 破壞力學簡介 4 2.2. 差排基本解 6 2.3. 傾斜平面應力波 9 2.4. 傾斜單裂縫受傾斜平面應力波 10 2.5. 傾斜雙裂縫受傾斜平面應力波 11 2.6. 傾斜裂縫之數值解法 13 第三章 水平裂縫系統受傾斜平面應力波作用 20 3.1. 單裂縫受傾斜平面應力波作用之數值結果 20 3.2. 水平雙裂縫受傾斜平面應力波作用之數值結果 24 3.3. 單裂縫和雙裂縫受傾斜平面應力波作用之數值結果 34 第四章 傾斜多裂縫系統受水平剪力波之應力強度因子之數值結果 49 4.1. 水平雙裂縫受傾斜平面應力波作用與傾斜雙裂縫受由法向量入射的水平剪力波之應力強度因子之數值結果 50 4.2. 傾斜雙裂縫受由法向量入射的水平剪力波之應力強度因子數值結果 52 第五章 結論與未來展望 59 5.1. 結論 59 5.2. 未來展望 61 文獻回顧 62 | |
| dc.language.iso | zh-TW | |
| dc.subject | 任意傾斜裂縫 | zh_TW |
| dc.subject | 拉普拉斯積分轉換 | zh_TW |
| dc.subject | 差排 | zh_TW |
| dc.subject | 應力強度因子 | zh_TW |
| dc.subject | 反平面 | zh_TW |
| dc.subject | 線彈性 | zh_TW |
| dc.subject | 高斯-柴比雪夫積分法 | zh_TW |
| dc.subject | 均質 | zh_TW |
| dc.subject | 拉普拉斯逆轉換 | zh_TW |
| dc.subject | Laplace Inverse Transform | en |
| dc.subject | linear elastic | en |
| dc.subject | anti-plane | en |
| dc.subject | dislocations | en |
| dc.subject | Laplace Integration Transform | en |
| dc.subject | Gauss-Chebyshev Integration Quadrature | en |
| dc.subject | homogeneous | en |
| dc.subject | arbitrary oriented cracks | en |
| dc.title | 任意傾斜多裂縫受反平面動態載重之暫態分析 | zh_TW |
| dc.title | Transient Analysis of Multiple Arbitrary Oriented Cracks under Anti-plane Dynamic Loading | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 106-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 趙振綱,陳東陽,郭茂坤 | |
| dc.subject.keyword | 均質,線彈性,反平面,應力強度因子,差排,拉普拉斯積分轉換,高斯-柴比雪夫積分法,拉普拉斯逆轉換,任意傾斜裂縫, | zh_TW |
| dc.subject.keyword | homogeneous,linear elastic,anti-plane,dislocations,Laplace Integration Transform,Gauss-Chebyshev Integration Quadrature,Laplace Inverse Transform,arbitrary oriented cracks, | en |
| dc.relation.page | 63 | |
| dc.identifier.doi | 10.6342/NTU201802882 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2018-08-09 | |
| dc.contributor.author-college | 工學院 | zh_TW |
| dc.contributor.author-dept | 應用力學研究所 | zh_TW |
| 顯示於系所單位: | 應用力學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-107-1.pdf 未授權公開取用 | 2.95 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
