請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/70687
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 陳林祈 | |
dc.contributor.author | Yi-Min Wu | en |
dc.contributor.author | 吳伊敏 | zh_TW |
dc.date.accessioned | 2021-06-17T04:34:57Z | - |
dc.date.available | 2023-08-13 | |
dc.date.copyright | 2018-08-13 | |
dc.date.issued | 2018 | |
dc.date.submitted | 2018-08-09 | |
dc.identifier.citation | 黃莉棋, 陳瑜忻, 李治中,林慶齡。2016。由最新的國際標準規格看血糖機精準的必要性與影響檢測準確的因素。內科學誌27:239-247。doi:10.6314/JIMT.2016.27(5).03
顏敬容。 2017 。固態離子選擇電極陣列製程與其應用於水耕栽培中營養離子感測之研究。碩士論文。台北:國立臺灣大學生物產業機電工程研究所。 Almudena Rivadeneyra, J. F.-S., Jesús Banqueri, Juan A. López-Villanueva, Luis Fermín Capitan-Vallvey, Alberto J. Palma. (2014). A novel electrode structure compared with interdigitated electrodes as capacitive sensor. Sensors and Actuators B, 204, 552–560. Anna Kisiel, H. M., Agata Michalska and Krzysztof Maksymiuk. (2005). All-solid-state reference electrodes based on conducting polymers. The Analyst. Banus, M. G. (1941). A DESIGN FOR A SATURATED CALOMEL ELECTRODE. Science, 93(2425), 601-602. Brown, L., Busten, Murphy, and Woodward. (2017). Chemistry: The Central Science. The LibreTexts libraries. Ha, J., Martin, S. M., Jeon, Y., Yoon, I. J., Brown, R. B., Nam, H., & Cha, G. S. (2005). A polymeric junction membrane for solid-state reference electrodes. Analytica Chimica Acta, 549(1-2), 59-66. Hoflund, G. B., Hazos, Z. F., & Salaita, G. N. (2000). Surface characterization study of Ag, AgO, and Ag2O using x-ray photoelectron spectroscopy and electron energy-loss spectroscopy. Physical Review B, 62(16), 11126-11133. Hu, J. B., Stein, A., & Buhlmann, P. (2016). Rational design of all-solid-state ion-selective electrodes and reference electrodes. Trac-Trends in Analytical Chemistry, 76, 102-114. doi:10.1016/j.trac.2015.11.004 Hui Tian, S. G. C., Charles E. Reece, Michael J. Kelley. (2008). The Mechanism of Electropolishing of Niobium in Hydrofluoric–Sulfuric Acid Electrolyte. Journal of The Electrochemical Society, 155(9), D563-D568. Inzelt, H., Lewenstam, A., & Scholz, F. (2013). Handbook of Reference Electrodes. Springer-Verlag Berlin Heidelberg. doi:10.1007/978-3-642-36188-3 Kahlert, H. (2010). Reference Electrodes. Electroanalytical Methods, 291-308. Kwon, N. H., Lee, K. S., Won, M. S., & Shim, Y. B. (2007). An all-solid-state reference electrode based on the layer-by-layer polymer coating. Analyst, 132(9), 906-912. doi:10.1039/b706905g Liao, W. Y., & Chou, T. C. (2006). Fabrication of a planar-form screen-printed solid electrolyte modified Ag/AgCl reference electrode for application in a potentiometric biosensor. Analytical Chemistry, 78(12), 4219-4223. Mami´nska, R., Dybko, A., & Wr´oblewski, W. (2006). All-solid-state miniaturised planar reference electrodes based on ionic liquids. Sensors and Actuators B-Chemical, 115, 552–557. Marios Sophocleous, J. K. A. (2017). A review of screen-printed silver/silver chloride (Ag/AgCl) reference electrodes potentially suitable for environmental potentiometric sensors. Sensors and Actuators A. Melissa, A. N., Sandie, H. T., & Kounaves, S. P. (1997). Fabrication and Characterization of a Solid State Reference Electrode for Electroanalysis of Natural Waters with Ultramicroelectrodes. Analytical Chemistry, 69(9), 1244-1247. Meng Li, Y.-T. L., Da-Wei Li, Yi-Tao Long. (2012). Recent developments and applications of screen-printed electrodes in environmental assays—A review. Analytica Chimica Acta, 734, 31-44. Nei, L. (2007). Some Milestones in the 50-year History of Electrochemical Oxygen Sensor Development. ECS Transactions, 2(25), 33-38. Paul J. Brewera, R. J. L., Richard J.C. Browna. (2012). An improved approach for fabricating Ag/AgCl reference electrodes. Electrochimica Acta, 71, 252–257. Richard J. C. Brown, M. J. T. M. (2005). The microporous structure of silver/silver chloride electrodes and the implications for Harned cell operation. Accred Qual Assur, 10, 352–355. Rius-Ruiz, F. X., Kisiel, A., Michalska, A., Maksymiuk, K., Riu, J., & Rius, F. X. (2011). Solid-state reference electrodes based on carbon nanotubes and polyacrylate membranes. Anal Bioanal Chem, 399, 3613–3622. Robert K. Franklin, M. D. J., Katharine A. Scott, Jun Ho Shim, Hakhyun Nam, Daryl R. Kipke and Richard B. Brown. (2005). Iridium Oxide Reference Electrodes for Neurochemical Sensing with MEMS Microelectrode Arrays. IEEE, 1400-1403. Shinwari, M. W., Zhitomirsky, D., Deen, I. A., Selvaganapathy, P. R., Deen, M. J., & Landheer, D. (2010a). Microfabricated Reference Electrodes and their Biosensing Applications. Sensors, 10(3), 1679-1715. Shinwari, M. W., Zhitomirsky, D., Deen, I. A., Selvaganapathy, P. R., Deen, M. J., & Landheer, D. (2010b). Microfabricated Reference Electrodes and their Biosensing Applications. Sensors, 10, 1679-1715. Simonis, A., Dawgul, M., Luth, H., & Schoning, M. J. (2005). Miniaturised reference electrodes for field-effect sensors compatible to silicon chip technology. Electrochimica Acta, 51(5), 930-937. Suzuki, H., Hirakawa, T., Sasaki, S., & Karube, I. (1998). Micromachined liquid-junction Ag:AgCl reference electrode. Sensors and Actuators B-Chemical, 46, 146–154. Suzuki, H., & Shiroishi, H. (1999). Microfabricated Liquid Junction Ag/AgCl Reference Electrode and Its Application to a One-Chip Potentiometric Sensor. Analytical Chemistry, 71(22), 5069-5075. doi:10.1021/ac990437t Tinkey, P., Lembo, T., Craig, S., West, C., & Van Pelt, C. (2006). Use of the i-STAT portable clinical analyzer in mice. lab Animal, 35(2), 45-50. Tsirlina, O. A. P. G. A. (2007). Electrode Potentials: Wiley‐VCH Verlag GmbH & Co. . Tymecki, L., Zwierkowska, Z., & Koncki, R. (2004). Screen-printed reference electrodes for potentiometric measurements. Analytica Chimica Acta, 526(1), 3-11. Zhang, T., Lai, C.-Z., Fierke, M. A., Stein, A., & Bühlmann, P. (2012). Advantages and Limitations of Reference Electrodes with an Ionic Liquid Junction and Three-Dimensionally Ordered Macroporous Carbon as Solid Contact. Anal. Chem., 84, 7771−7778. | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/70687 | - |
dc.description.abstract | 電化學感測器近年廣泛應用於醫療、農業和環境監控等產業,而參考電極為其提供參考電位值,並影響感測的精確度與時間。目前感測器中的參考電極需要較長時間才可達到穩定的電位值,不過使用者希望數分鐘內可完成所有感測程序,使許多系統在參考電極尚未穩定時就讀取數值,使量測結果誤差增加。本論文欲開發一固態式參考電極可於數秒內達到一穩定電位值以減少量測誤差,其層狀結構從聚對苯二甲酸乙二酯(polyethylene terephthalate, PET)基材往上依序為銀/氯化銀網印電極(Ag/AgCl screen-printed electrode)、氯化鉀–聚氯乙烯(KCl-PVC)層和聚氯乙烯(PVC)層 。根據文獻,網印電極表面氯化銀的厚度與緻密程度影響參考電極的電位穩定與使用壽命,以及氯化銀需有飽和的氯離子進行可逆的氧化還原反應。是故,將網印電極浸泡於氯化鐵以提高表面氯化銀比例後,電極表面氯化銀比例提高後較不易產生極化現象,使參考電極的60秒內電位飄移量減少約3~5 mV。接著將不同重量的KCl粉末以PVC固定於已氯化的網印電極上,利用KCl覆蓋率與厚度計算其最佳濃度參數,使氯化銀可與充足的氯離子反應;另外由結果得知,若上層的PVC層未優化,將使過量的KCl在低濃度待測液下不斷溶出且增加電位飄移量。其次,影響參考電極的另一因素為液面接界電位(liquid-junction potential),即離子擴散時在介面造成的電位差。本論文滴覆不同的PVC濃度與厚度在KCl-PVC層上,量測KCl溶出量以分析PVC薄膜的通透性,再以開環電位法量測固態式參考電極的各項能力。從結果說明PVC層內層KCl溶出可能使液面接界現象改變,不僅影響電位飄移量,也降低不同濃度待測液間的電位一致性。最佳參數的固態式參考電極其30秒內電位飄移量約0.5 mV和響應時間為25秒,以及在不同濃度待測液下的電位差異約3 mV。最後藉由與離子選擇電極共同量測鉀離子濃度以及應用於循環伏安法的掃描,皆證實自製固態式參考電極可適用於二極式與三極式系統中。 | zh_TW |
dc.description.abstract | Electrochemical sensor is widely applied in medical examination, agriculture and environmental monitoring. The major components of the sensor include working electrode and solid-state reference electrode (SSRE). While the reaction of interest is occurring on the working electrode, SSRE provides a basis to measure the potential of working electrode. By providing reference potential, SSRE has to reach its stable state first, and on current SSRE it takes more than 5 minutes, which is much longer than user requirement, i.e. within minutes. Thus, in this study, we develop a layered SSRE that can reach its stable potential in a timely manner, and ultimately enhance the accuracy of the sensor. The layered structures of SSRE from bottom to top include polyethylene terephthalate (PET) substrate, Ag/AgCl screen-printed electrode (SPE) layer, potassium chloride-polyvinyl chloride (KCl-PVC) layer and PVC layer. In previous studies, increasing the thickness and compactness of AgCl facilitates stabling the potential and extends the life of SSRE. Thus, in this study the Ag/AgCl SPEs is chlorized by immersing in FeCl3 solution to increase the deposition of AgCl on the surface of electrode. The results show that the chlorized electrode is less vulnerable to polarization, and the potential drift in 60 seconds is decreased to 1 mV. Furthermore, KCl-PVC layer is covered on the chlorized SPEs. The coverage and thickness of KCl are calculated to ensure that sufficient Cl- maintains reversible redox reaction with AgCl on the surface of SPEs. However, it is found that KCl dissolves into the analyte during measurement, which leads to the potential drifts especially in analyte of low concentration. Hence, an optimized PVC layer is covered on top of KCl to prevent KCl from dissolving. Secondly, different concentrations and thickness of PVC layers are covered on KCl-PVC layer. The results show that the ion diffusion on PVC layer may alter the liquid-junction potential, which is critical on potential drift and reproducible potential in different analytes. By implementing these approaches, the potential drift in 30 seconds of the optimized SSRE is decreased to 0.5 mV, and the response time is shortened to 25 seconds, which is significant improvement compared to the current SSRE. Finally, the optimized SSRE is used in cyclic voltammetry and applied with potassium ion-selective electrodes, and proved to be feasible in electrochemical sensing. | en |
dc.description.provenance | Made available in DSpace on 2021-06-17T04:34:57Z (GMT). No. of bitstreams: 1 ntu-107-R05631015-1.pdf: 26875206 bytes, checksum: d5f70b5fa84c85a88e485be81c2e836c (MD5) Previous issue date: 2018 | en |
dc.description.tableofcontents | 致謝 i
中文摘要 ii Abstract iii 目錄 iv 圖目錄 viii 表目錄 xi 符號說明 xii 第一章 緒論 1 1.1 前言 1 1.2 研究動機 2 1.3 研究目的 4 1.4 研究架構 5 第二章 文獻探討 6 2.1 參考電極的原理與應用 6 2.1.1 參考電極於電化學系統之功能 6 2.1.2 參考電極材料 8 2.1.3 常見的參考電極 9 2.1.3.1 標準氫電極 9 2.1.3.2 汞參考電極 10 2.1.3.3 銀/氯化銀電極 11 2.2 銀/氯化銀固態式參考電極 13 2.2.1 準參考電極 13 2.2.2 液面接界參考電極 16 2.2.2.1 液面接界電位 16 2.2.2.2 液面接界參考電極 18 2.3 銀/氯化銀液接參考電極 19 2.3.1 網版印刷電極 19 2.3.2 各式鹽類取代內溶液 22 2.3.3 疏水性高分子薄膜取代通透膜 25 2.4 參考電極應用於電化學感測器 27 2.4.1 參考電極應用於生物感測器 27 2.4.1.1 電化學式生物感測器的發展 27 2.4.1.2 參考電極應用於不同系統的生物感測器 29 2.4.2 固態式參考電極結合離子選擇電極 31 第三章 材料與實驗方法 33 3.1 實驗材料與儀器 33 3.1.1 實驗材料 33 3.1.2 實驗儀器 34 3.2 液面液接參考電極製備 35 3.2.1 網版印刷電極 35 3.2.2 網印電極氯化 36 3.2.3 KCl-PVC層製備 36 3.2.4 PVC層製備 37 3.3 各層結構與表面分析 38 3.3.1 X射線光電子能譜 38 3.3.2 掃描式電子顯微鏡影像 38 3.3.3 表面粗度測定器 38 3.3.4 ImageJ影像面積分析軟體 38 3.4 參考電極穩定性測試 40 3.4.1 開環電位法 40 3.4.2 循環伏安法 40 3.4.3 電化學阻抗頻譜 40 第四章 結果與討論 41 4.1 網印電極表面氯化前後與電位穩定性之關係 41 4.1.1 表面銀與氯化銀比例分析 42 4.1.2 表面結構分析 45 4.1.3 電化學阻抗頻譜分析 48 4.1.4 電位飄移量 51 4.1.5 響應時間 53 4.1.6 不同濃度待測液下之電位一致性 55 4.1.7 小結 57 4.2 KCl-PVC層與電極表現之關係 58 4.2.1 KCl覆蓋率 58 4.2.2 KCl-PVC層之厚度 60 4.2.3 電位飄移量 61 4.2.4 不同濃度待測液下之電位一致性 63 4.2.5 小結 64 4.3 PVC層之濃度對參考電極的影響 65 4.3.1 不同濃度之PVC層厚度 65 4.3.2 薄膜通透性分析 69 4.3.3 電位飄移量 70 4.3.4 響應時間 72 4.3.5 不同濃度待測液下之電位一致性 73 4.3.6 小結 75 4.4 PVC層之厚度對參考電極的影響 76 4.4.1 不同厚度之PVC層 76 4.4.2 薄膜通透性分析 80 4.4.3 電位飄移量 81 4.4.4 響應時間 83 4.4.5 不同濃度待測液下之電位一致性 84 4.4.6 小結 85 4.5 固態式參考電極之實際應用 86 4.5.1 與鉀離子選擇電極共同量測 87 4.5.2 與直立式電極比較電荷轉移阻抗 88 4.5.3 應用於循環伏安法 89 4.5.4 小結 91 第五章 結論與未來展望 92 5.1 結論 92 5.2 未來展望 94 參考文獻 95 附錄 98 | |
dc.language.iso | zh-TW | |
dc.title | 探討聚氯乙烯/氯化鉀薄膜製程對固態銀/氯化銀參考電極電位穩定性之影響 | zh_TW |
dc.title | The influence of PVC/KCl membrane fabrication on the potential stability of a solid-state Ag/AgCl reference electrode | en |
dc.type | Thesis | |
dc.date.schoolyear | 106-2 | |
dc.description.degree | 碩士 | |
dc.contributor.oralexamcommittee | 陳建彰,廖英志,鄭宗記 | |
dc.subject.keyword | 固態式參考電極、銀/氯化銀電極、液接電位、電位一致性、響應時間、電位飄移量, | zh_TW |
dc.subject.keyword | solid-state reference electrode, Ag/AgCl electrode, liquid-junction potential, reproducible potential, response time, potential drift, | en |
dc.relation.page | 101 | |
dc.identifier.doi | 10.6342/NTU201802884 | |
dc.rights.note | 有償授權 | |
dc.date.accepted | 2018-08-09 | |
dc.contributor.author-college | 生物資源暨農學院 | zh_TW |
dc.contributor.author-dept | 生物產業機電工程學研究所 | zh_TW |
顯示於系所單位: | 生物機電工程學系 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-107-1.pdf 目前未授權公開取用 | 26.25 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。