Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 管理學院
  3. 資訊管理學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/70681
標題: 基於高斯過程迴歸的梯度提升演算法
A Gradient Boosting Algorithm Based on Gaussian Process Regression
作者: Wei-Chun Liao
廖維君
指導教授: 盧信銘(Hsin-Min Lu)
關鍵字: 機器學習,高斯過程迴歸,梯度提升,估計,
Machine learning,Gaussian Process Regression,Gradient Boosting,Approximations,
出版年 : 2018
學位: 碩士
摘要: 高斯過程迴歸 (Gaussian Process Regression) 是機器學習中的一種方法,此方法具有良好的預測結果、且容易實作,但在運算時時間及空間的複雜度高,使得此方法難以被實際運用在大量資料集上。本研究提供一個基於梯度提升演算法的估計方法,實驗結果顯示此方法能夠在訓練時使用較低的時間及記憶體成本來達到良好的估計效果。
Gaussian process regression (GPR) is an important model in the field of machine learning. GPR model is flexible, robust, and easy to implement. However, it suffers from expensive computational cost: O(n^3) for training time, O(n^2) for training memory and O(n) for testing time, where n is the number of observations in training data. In this work, we develop a fast approximation method to reduce the time and space complexity. The proposed method is related to the design of gradient boosting algorithm. We conduct experiments using real-world dataset and demonstrate that the proposed method can achieve comparable prediction performance compared to the standard GPR model and some state-of-the-art regression methods.
URI: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/70681
DOI: 10.6342/NTU201802714
全文授權: 有償授權
顯示於系所單位:資訊管理學系

文件中的檔案:
檔案 大小格式 
ntu-107-1.pdf
  未授權公開取用
1.7 MBAdobe PDF
顯示文件完整紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved