Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生物資源暨農學院
  3. 生物機電工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/70678
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor陳林祈(Lin-Chi Chen)
dc.contributor.authorChi-Han Luen
dc.contributor.author呂奇翰zh_TW
dc.date.accessioned2021-06-17T04:34:39Z-
dc.date.available2023-08-13
dc.date.copyright2018-08-13
dc.date.issued2018
dc.date.submitted2018-08-09
dc.identifier.citation張哲綸。2015。以普魯士藍薄膜作為固態式離子選擇電極之離子電子傳導層。碩士論文。台北:國立臺灣大學生物產業機電工程學系研究所。
廖俊豪。2006。普魯士藍、導電高分子PEDOT及其電致色變元件:熱穩定性、長期穩定性與離子進出PEDOT薄膜之傳輸行為研究。碩士論文。台北:國立臺灣大學化學工程學研究所。
顏敬容。2017。固態離子選擇電極陣列試片製程及其應用於水耕栽培中營養離子感測之研究。碩士論文。台北:國立臺灣大學生物產業機電工程學系研究所。
An, Q., Jia, F., Xu, J., Li, F., & Niu, L. (2017). Recent progress of all solid state ion selective electrode. SCIENTIA SINICA Chimica, 47(5), 524–531.
Bakker, E., Bühlmann, P., & Pretsch, E. (1997). Carrier-based ion-selective electrodes and bulk optodes. 1. General characteristics. Chemical Reviews, 97(8), 3083–3132.
Bakker, E., Bühlmann, P., & Pretsch, E. (2004). The phase-boundary potential model. Talanta, 63(1), 3–20.
Banks, C. E., Foster, C. W., & Kadara, R. O. (2016). Screen-printing electrochemical architectures. London, UK: Springer.
Bloch, R., Shatkay, A., & Saroff., H. A. (1967). Fabrication and evaluation of membranes as specific electrodes for calcium ions. Biophysical Journal, 7(10), 865–877.
Bobacka, J. (1999). Potential stability of all-solid-state ion-selective electrodes using conducting polymers as ion-to-electron transducers. Analytical Chemistry, 71(21), 4932–4937.
Bobacka, J. (2006). Conducting polymer-based solid-state ion-selective electrodes. Electroanalysis, 18(1), 7–18.
Bobacka, J., McCarrick, M., & Ivaskat, A. (1994). All solid-state poly(viny1 chloride) membrane ion-selective electrodes with poly(3-octylthiophene) solid internal contact. Analyst, 119(September), 1985–1991.
Buck, R. P., & Lindner, E. (1994). Recommendations for nomenclature of ionselective electrodes. Pure and Applied Chemistry, 66(12), 2527–2536.
Cadogan, A., Gao, Z., Lewenstam, A., Ivaska, A., Diamond, D., Lewenstam, A., & Gao, Z. (1992). All-solid-state sodium-selective electrode based on a calixarene ionophore in a poly(vinyl chloride) membrane with a polypyrrole solid contact. Analytical Chemistry, 64(21), 2496–2501.
Cattrall, R. W., & Freiser, H. (1971). Coated wire ion selective electrodes. Analytical Chemistry, 43(13), 1905–1906.
Cremer, M. (1906). Über die Ursache der elektromotorischen Eigenschaften der Gewebe, zugleich ein Beitrag zur Lehre von den polyphasischen Elektrolytketten. Zeitschrift Fur Biologie, 47, 562.
Crespo, G. A., Macho, S., Bobacka, J., & Rius, F. X. (2009). Transduction mechanism of carbon nanotubes transduction mechanism of carbon nanotubes in solid-contact ion-selective electrodes. Analytical Chemistry, 81(2), 676–681.
Crespo, G. A., Macho, S., & Rius, F. X. (2008). Ion-selective electrodes using carbon nanotubes as ion-to-electron transducers. Analytical Chemistry, 80(4), 1316–1322.
de Beer, D., & van den Heuvel, J. C. (1988). Response of ammonium-selective microelectrodes based on the neutral carrier nonactin. Talanta, 35(9), 728–730.
De Marco, R., Veder, J.-P., Clarke, G., Nelson, A., Prince, K., Pretsch, E., & Bakker, E. (2008). Evidence of a water layer in solid-contact polymeric ion sensors. Phys. Chem. Chem. Phys., 10(1), 73–76.
Degans, H. (2016). World’s first solid-state multi-ion sensor for Internet of Things applications. Retrieved from https://phys.org/news/2016-12-world-solid-state-multi-ion-sensor-internet.html
Döbbelin, M., Marcilla, R., Tollan, C., Pomposo, J. A., Sarasua, J.-R., & Mecerreyes, D. (2008). A new approach to hydrophobic and water-resistant poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) films using ionic liquids. Journal of Materials Chemistry, 18(44), 5354.
Fibbioli, M., Morf, W. E., Badertscher, M., De Rooij, N. F., & Pretsch, E. (2000). Potential drifts of solid-contacted ion-selective electrodes due to zero-current ion fluxes through the sensor membrane. Electroanalysis, 12(16), 1286–1292.
Fouskaki, M., & Chaniotakis, N. (2008). Fullerene-based electrochemical buffer layer for ion-selective electrodes. The Analyst, 133(8), 1072.
Gao, W., Emaminejad, S., Nyein, H. Y. Y., Challa, S., Chen, K., Peck, A., … Javey, A. (2016). Fully integrated wearable sensor arrays for multiplexed in situ perspiration analysis. Nature, 529(7587), 509–514.
Grygołowicz-Pawlak, E., Wygla̧dacz, K., Sȩk, S., Bilewicz, R., Brzózka, Z., & Malinowska, E. (2005). Studies on ferrocene organothiol monolayer as an intermediate phase of potentiometric sensors with gold inner contact. Sensors and Actuators, B: Chemical, 111–112(SUPPL.), 310–316.
Guggenheim, E. A. (1928). The conceptions of electrical potential difference between two phases and the individual activities of ions. The Journal of Physical Chemistry, 33(6), 842–849.
Gyurcsányi, R. E., Rangisetty, N., Clifton, S., Pendley, B. D., & Lindner, E. (2004). Microfabricated ISEs: Critical comparison of inherently conducting polymer and hydrogel based inner contacts. Talanta, 63(1), 89–99.
Haber, F., & Klemensiewicz, Z. (1909). Über elektrische Phasengrenzkräfte. Zeitschrift Für Physikalische Chemie, 67U(1), 385–431.
He, N., Höfler, L., Latonen, R. M., & Lindfors, T. (2015). Influence of hydrophobization of the polyazulene ion-to-electron transducer on the potential stability of calcium-selective solid-contact electrodes. Sensors and Actuators, B: Chemical, 207(PB), 918–925.
He, N., Papp, S., Lindfors, T., Höfler, L., Latonen, R. M., & Gyurcsányi, R. E. (2017). Pre-Polarized Hydrophobic Conducting Polymer Solid-Contact Ion-Selective Electrodes with Improved Potential Reproducibility. Analytical Chemistry, 89(4), 2598–2605.
Hernández-Pérez, T., Morales, M., Batina, N., & Salmón, M. (2001). Effect of the electrosynthesis method on th surface morphology of the polypyrrole film. An atomic force microscopy study. Journal of The Electrochemical Society, 148, C369.
Hernández, R., Riu, J., Bobacka, J., Vallés, C., Jiménez, P., Benito, A. M., … Rius, F. X. (2012). Reduced graphene oxide films as solid transducers in potentiometric all-solid-state ion-selective electrodes. Journal of Physical Chemistry C, 116(42), 22570–22578.
Hu, J., Stein, A., & Bühlmann, P. (2016). Rational design of all-solid-state ion-selective electrodes and reference electrodes. TrAC - Trends in Analytical Chemistry, 76, 102–114.
Huang, J., & Wan, M. (1999). Polyaniline doped with different sulfonic acids by in situ doping polymerization. Journal of Polymer Science, Part A: Polymer Chemistry, 37(9), 1277–1284.
Iakobson, O. D., Gribkova, O. L., Nekrasov, A. A., & Vannikov, A. V. (2016). The effect of counterion in polymer sulfonates on the synthesis and properties of poly-3,4-ethylenedioxythiophene. Russian Journal of Electrochemistry, 52(12), 1191–1201.
Jeszke, M., Trzciński, K., Karczewski, J., & Luboch, E. (2017). Electrochimica Acta Investigation of poly ( 3 , 4-ethylenedioxythiophene ) deposition method in fl uence on properties of ion-selective electrodes based on bis ( benzo- 15-crown-5 ) derivatives. Electrochimica Acta, 246, 424–432.
Jiao, S. Q., Zhou, H. H., Chen, J. H., Luo, S. L., & Kuang, Y. F. (2004). Influence of the preparation conditions on the morphology of polyaniline electrodeposited by the pulse galvanostatic method. Journal of Applied Polymer Science, 94(4), 1389–1394.
Jonas, F., Heywang, G., Schmidtberg, W., Heinze, J., & Dietrich, M. (1991). US 5,035,926A.
Kobashi, M., & Takeuchi, H. (1998). Inhomogeneity of spin-coated and cast non-regioregular poly(3-hexylthiophene) films. structures and electrical and photophysical properties. Macromolecules, 31(21), 7273–7278.
Kraig, R., & Nicholson, C. (1976). Sodium liquid ion exchanger microelectrode used to measure large extracellular sodium transients. Science, 194(4266), 725–726.
Laboratory requirements, 42 C.F.R. §493.391 (2011).
Lai, C. Z., Fierke, M. A., Stein, A., & Bühlmann, P. (2007). Ion-selective electrodes with three-dimensionally ordered macroporous carbon as the solid contact. Analytical Chemistry, 79(12), 4621–4626.
Lehn, J. M., & Sauvage, J. P. (1971). Cation and cavity selectivities of alkali and alkaline-earth “cryptates.” Journal of the Chemical Society D: Chemical Communications, (9), 440.
Lewenstam, A., Bobacka, J., & Ivaska, A. (1994). Mechanism of ionic and redox sensitivity of p-type conducting polymers. Part 1. Theory. Journal of Electroanalytical Chemistry, 368(1–2), 23–31.
Lindfors, T. (2009). Light sensitivity and potential stability of electrically conducting polymers commonly used in solid contact ion-selective electrodes. Journal of Solid State Electrochemistry, 13(1), 77–89.
Lindfors, T., & Ivaska, A. (2004). Stability of the inner polyaniline solid contact layer in all-solid-state K+-selective electrodes based on plasticized poly(vinyl chloride). Analytical Chemistry, 76(15), 4387–4394.
Lindner, E., & Gyurcsányi, R. E. (2009). Quality control criteria for solid-contact, solvent polymeric membrane ion-selective electrodes. Journal of Solid State Electrochemistry, 13(1), 51–68.
Lindner, E., & Umezawa, Y. (2008). Performance evaluation criteria for preparation and measurement of macro- and microfabricated ion-selective electrodes (IUPAC Technical Report). Pure and Applied Chemistry, 80(1), 85–104.
Liu, C. X., Lang, W. Z., Shi, B. Bin, & Guo, Y. J. (2013). Fabrication of ordered honeycomb porous polyvinyl chloride (PVC) films by breath figures method. Materials Letters, 107, 53–55.
Lukyanenko, N. G., Tltova, N. Y., Nesterenko, N. L., & Scherbakov, S. V. (1992). Cation selectivity of poly(vinyl chloride) membranes based on cryptands with thiourea fragments. Analytica Chimica Acta, 263, 169–173.
Martin-Vosshage, D., & Chowdari, B. V. R. (1995). XPS studies on (PEO)nLiCIO4 and (PEO)nCu(CIO4)2 polymer electrolytes. J. Electrochem. Soc., 142(5), 1442–1446.
Melato, A. I., Viana, A. S., & Abrantes, L. M. (2010). Influence of the electropolymerisation mode on PEDOTh films morphology and redox behaviour-an AFM investigation. Journal of Solid State Electrochemistry, 14(4), 523–530.
Mendecki, L., Fayose, T., Stockmal, K. A., Wei, J., Granados-Focil, S., McGraw, C. M., & Radu, A. (2015). Robust and ultrasensitive polymer membrane-based carbonate-selective electrodes. Analytical Chemistry, 87(15), 7515–7518.
Michalska, A., Gałuszkiewicz, A., Ogonowska, M., Ocypa, M., & Maksymiuk, K. (2004). PEDOT films: Multifunctional membranes for electrochemical ion sensing. Journal of Solid State Electrochemistry, 8(6), 381–389.
Momma, T., Komaba, S., Yamamoto, M., Osaka, T., & Yamauchi, S. (1995). All-solid-state potassium ; selective electrode using double-layer film of polypyrrole / polyanion composite and plasticized poly ( viny1 chloride ) containing valinomycin. Sensors and Actuators, B: Chemical, 25, 724–728.
Momma, T., Yamamoto, M., Komaba, S., & Osaka, T. (1996). Analysis of the long-term potential stability of an all-solid-state potassium-selective electrode with electroactive polypyrrole film. Journal of Electroanalytical Chemistry, 407(1–2), 91–96.
Moore, C., & Pressman, B. C. (1964). Mechanism of action of valinomycin on mitochondria. Biochemical and Biophysical Research Communications, 15(6), 562–567.
Paczosa-Bator, B., Cabaj, L., Piech, R., & Skupień, K. (2013). Potentiometric sensors with carbon black supporting platinum nanoparticles. Analytical Chemistry, 85(21), 10255–10261.
Park, H., Lee, S. H., Kim, F. S., Choi, H. H., Cheong, I. W., & Kim, J. H. (2014). Enhanced thermoelectric properties of PEDOT:PSS nanofilms by a chemical dedoping process. J. Mater. Chem. A, 2(18), 6532–6539.
Parrilla, M., Cánovas, R., Jeerapan, I., Andrade, F. J., & Wang, J. (2016). A textile-based stretchable multi-ion potentiometric sensor. Advanced Healthcare Materials, 5(9), 996–1001.
Patra, S., Barai, K., & Munichandraiah, N. (2008). Scanning electron microscopy studies of PEDOT prepared by various electrochemical routes. Synthetic Metals, 158(10), 430–435.
Pedersen, C. J. (1967). Cyclic polyethers and their complexes with metal salts. Journal of the American Chemical Society, 89(26), 7017–7036.
Ping, J., Wang, Y., Wu, J., & Ying, Y. (2011). Development of an all-solid-state potassium ion-selective electrode using grapheme as the solid-contact transducer. Electrochemistry Communications, 13(12), 1529–1532.
Pioda, L. A. R., Stankova, V., & Simon, W. (1969). Highly selective potassium ion responsive liquid-membrane electrode. Analytical Letters, 2(12), 665–674.
Ruecha, N., Chailapakul, O., Suzuki, K., & Citterio, D. (2017). Fully inkjet-printed paper-based potentiometric ion-sensing devices. Analytical Chemistry, 89(19), 10608–10616.
Rumpf, G., Spichiger-keller, U., & Simon, W. (1992). Calibration-free human serum measurement of sodium and potassium with an electrically symmetric measuring in undiluted system. Analytical Sciences, 8(August), 553–559.
Ružička, J., & Rald, K. (1971). The liquid-state, iodide-selective electrode. Analytica Chimica Acta, 53(1), 1–12.
Ryba, O., & Petranek, J. (1973). Potassium ion-selective electrode based on dimethyl-dibenzo-30-crown-10 in a poly(vinyl chloride) matrix. Journal of Electroanalytical Chemistry and Interfacial Electrochemistry, 44, 425–430.
Sim, L. H., Gan, S. N., Chan, C. H., & Yahya, R. (2010). ATR-FTIR studies on ion interaction of lithium perchlorate in polyacrylate/poly(ethylene oxide) blends. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 76(3–4), 287–292.
Srivastava, S. K., Gupta, V. K., & Jain, S. (1996). PVC-based 2,2,2-cryptand sensor for zinc ions. Analytical Chemistry, 68(7), 1272–1275.
Štefanac, Z., & Simon, W. (1967). Ion specific electrochemical behavior of macrotetrolides in membranes. Microchemical Journal, 12(1), 125–132.
Szűcs, J., Lindfors, T., Bobacka, J., & Gyurcsányi, R. E. (2016). Ion-selective electrodes with 3D nanostructured conducting polymer solid contact. Electroanalysis, 28(4), 778–786.
Talaie, A., & Wallace, G. G. (1994). The effect of the counterion on the electrochemical properties of conducting polymers - a study using resistometry. Synthetic Metals, 63(2), 83–88.
Umezawa, Y., Bühlmann, P., Umezawa, K., Tohda, K., & Amemiya, S. (2000). Potentiometric Selectivity Coefficients of Ion-Selective Electrodes. Part I. Inorganic Cations (Technical Report). Pure and Applied Chemistry, 72(10), 1851–2082.
Vamvakaki, M., & Chaniotakis, N. A. (1996). Solid-contact ion-selective electrode with stable internal electrode. Analytica Chimica Acta, 320(1), 53–61.
Vanamo, U., & Bobacka, J. (2014). Electrochemical control of the standard potential of solid-contact ion-selective electrodes having a conducting polymer as ion-to-electron transducer. Electrochimica Acta, 122, 316–321.
Varesano, A., Rombaldoni, F., & Tonetti, C. (2013). Electrically conductive and hydrophobic cotton fabrics by polypyrrole-oleic acid coating. Fibers and Polymers, 14(5), 703–709.
Vázquez, M., Bobacka, J., Ivaska, A., & Lewenstam, A. (2002). Influence of oxygen and carbon dioxide on the electrochemical stability of poly ( 3 , 4-ethylenedioxythiophene ) used as ion-to-electron transducer in all-solid-state ion-selective electrodes. Sensors And Actuators, 82, 7–13.
Veder, J. P., De Marco, R., Patel, K., Si, P., Grygolowicz-Pawlak, E., James, M., … Bakker, E. (2013). Evidence for a surface confined ion-to-electron transduction reaction in solid-contact ion-selective electrodes based on poly(3-octylthiophene). Analytical Chemistry, 85(21), 10495–10502.
Wang, L., Lin, Y., & Su, Z. (2009). Counterion exchange at the surface of polyelectrolyte multilayer film for wettability modulation. Soft Matter, 5(10), 2072.
Yamaura, M., Hagiwara, T., & Iwata, K. (1988). Enhancement of electrical conductivity of polypyrrole film by stretching: Counter ion effect. Synthetic Metals, 26(3), 209–224.
Yin, T., Pan, D., & Qin, W. (2014). All-solid-state polymeric membrane ion-selective miniaturized electrodes based on a nanoporous gold film as solid contact. Analytical Chemistry, 86(22), 11038–11044.
Yuta, Y., Takashi, Y., Keiichi, K., & Toshiyuki, S. (1980). Simple evaluation of enantiomer-selectivity of crown ether using membrane electrode. Chemistry Letters, 9(7), 769–772.
Zhang, J., Harris, A. R., Cattrall, R. W., & Bond, A. M. (2010). Voltammetric ion-selective electrodes for the selective determination of cations and anions. Analytical Chemistry, 82(5), 1624–1633.
Zhao, Q., Jamal, R., Zhang, L., Wang, M., & Abdiryim, T. (2014). The structure and properties of PEDOT synthesized by template-free solution method. Nanoscale Research Letters, 9(1), 1–9.
Zorn, G., Baio, J. E., Weidner, T., Migonney, V., & Castner, D. G. (2011). Characterization of poly(sodium styrene sulfonate) thin films grafted from functionalized titanium surfaces. Langmuir, 27(21), 13104–13112.
Zou, X. U., Zhen, X. V., Cheong, J. H., & Bühlmann, P. (2014). Calibration-free ionophore-based ion-selective electrodes with a Co(II)/Co(III) redox couple-based solid contact. Analytical Chemistry, 86(17), 8687–8692.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/70678-
dc.description.abstract固態式離子選擇電極 (solid-state ion-selective electrode, SS-ISE) 擁有利於微小化、平面化與較不受環境影響等優勢,為目前離子感測領域最為熱門的研究主題。然而,固態式離子選擇電極普遍長時間電位穩定性不佳,每次使用前皆須經過校正。因此,本研究藉由調控離子選擇薄膜與聚(3,4-乙烯二氧噻吩) (poly(3,4-ethylenedioxythiophene), PEDOT) 導電高分子離子電子傳導層的製程,如離子選擇薄膜的製程方法與PEDOT 的厚度、相對離子 (counter ion) 種類、電鍍方法等,以製作出長時間電位穩定性高的固態式離子選擇電極。首先,調整離子選擇薄膜的製程方法可以縮小其孔隙,進而降低水分子滲入電極的速率,減緩固態式離子選擇電極的水層效應。離子與電子之間的訊號轉換與離子選擇薄膜與PEDOT表面發生的氧化還原反應有關,因此PEDOT的電化學性質對大幅影響固態式離子選擇電極的電位穩定性。一般而言,離子電子傳導層應具有電化學穩定性高、贋電容值高與電荷轉移阻抗低等性質。在定電流的電鍍條件下,以ClO4-作為相對離子、厚度最大的PEDOT滿足此條件,以其製作鈉離子選擇電極的長時間電位穩定性表現最佳,一週之內的電位飄移為58.3 ± 3.1 mV。不過,循環伏安法電鍍的PEDOT:ClO4的雖然贋電容值較低,但是製成固態式離子選擇電極仍然可以大幅提升其長時間電位穩定性。以此一條件製作的鈉離子選擇電極在一週之內的電位飄移僅有5.7 ± 3.1 mV,為本研究中表現最佳者。zh_TW
dc.description.abstractNowadays, solid-state ion-selective electrodes (SS-ISEs) have been a hot research topic because they are advantageous for miniaturization and planarization as well as less influenced by environment. However, the long-term potential stability of SS-ISEs are usually low, hence calibrations are needed before every use. In this study, poly(3,4-ethylenedioxythiophene) (PEDOT) was used as ion-to-electron transducer (IET) in SS-ISEs. We aimed to enhance the long-term potential stability of SS-ISEs by tuning the parameters of its manufacturing process, including casting method of ion-selective membrane (ISM) as well as thickness, counter ion and electrodeposition method of IET. First of all, changing fabrication method of ISM reduced its pore size, which significantly decelerated water leaking into the SS-ISE, hence easing the water layer effect of SS-ISE. Secondly, in an IET, signal transfer between ion and electron is related to the redox reaction on the surface of PEDOT. Thus, electrochemical properties of PEDOT has a great effect on the potential stability of SS-ISEs. In general, the IETs suitable for SS-ISEs are those with high electrochemical stability, high pseudocapacitance and low charge transfer resistance. When constant potential method was used as electrodeposition method, the thickest PEDOT with as ClO4- counter ion met the requirements, and Na+-SS-ISE with it had the lowest long-term potential drift of 58.3 ± 3.1 mV in one week. On the other hand, although PEDOT:ClO4 electrodeposited using CV method had lower pseudocapacitance, the long-term potential stability of Na+-SS-ISE with it was enhanced drastically. Its long-term potential drift was merely 5.7 ± 3.1 mV in one week, which is the best in the whole study.en
dc.description.provenanceMade available in DSpace on 2021-06-17T04:34:39Z (GMT). No. of bitstreams: 1
ntu-107-R05631016-1.pdf: 11654087 bytes, checksum: 2211e0cfdc0e4e3bf9b5c3b2e555b9fe (MD5)
Previous issue date: 2018
en
dc.description.tableofcontents致謝 i
摘要 ii
Abstract iii
目錄 iv
圖目錄 ix
表目錄 xii
符號說明 xiii
第一章 緒論 1
1.1 前言 1
1.2 研究動機 2
1.3 研究目的 3
1.4 研究架構 4
第二章 文獻探討 5
2.1 離子選擇電極發展 5
2.2 固態式離子選擇電極感測原理 10
2.3 離子電子傳導層 14
2.3.1 贋電容型離子電子傳導層 15
2.3.2 電雙層電容型離子電子傳導層 17
2.4 免校正固態式離子選擇電極與電位穩定性調控參數 19
2.4.1 導電高分子離子電子傳導層的厚度 21
2.4.2 導電高分子離子電子傳導層的相對離子種類 22
2.4.3 導電高分子離子電子傳導層電鍍方法 24
2.5 PEDOT在固態式離子選擇電極上的應用 25
第三章 研究材料與方法 27
3.1 實驗儀器與設備 27
3.2 實驗藥品 28
3.3 鈉離子固態式離子選擇電極製作 29
3.3.1 網版印刷碳電極製作 29
3.3.2 PEDOT離子電子傳導層製作 32
3.3.3 鈉離子選擇薄膜製作 33
3.4 離子選擇薄膜分析 35
3.4.1 掃描式電子顯微鏡表面分析 35
3.4.2 共軛焦顯微鏡分析水分子滲透 35
3.5 PEDOT離子電子傳導層分析 35
3.5.1 掃描式電子顯微鏡表面分析 35
3.5.2 循環伏安法分析 35
3.6 鈉離子選擇電極感測表現分析 36
3.6.1 開環路電位量測 36
3.6.2 選擇性分析 36
3.6.3 平衡時間分析 37
3.6.4 電化學阻抗頻譜分析 37
3.6.5 計時電位法分析水層效應 38
3.6.6 長時間電位穩定性測試 39
第四章 結果與討論 40
4.1 離子選擇薄膜製備方法探討 40
4.1.1 離子選擇薄膜結構分析 40
4.1.1.1 掃描式電子顯微鏡表面分析 40
4.1.1.2 共軛焦顯微鏡分析水分子滲透 41
4.1.2 鈉離子選擇電極感測表現分析 43
4.1.2.1 開環路電位量測 43
4.1.2.2 選擇性分析 45
4.1.2.3 平衡時間分析 48
4.1.2.4 計時電位法分析水層效應 49
4.1.3 小結 52
4.2 PEDOT離子電子傳導層厚度探討 53
4.2.1 PEDOT離子電子傳導層分析 53
4.2.1.1 循環伏安法分析 53
4.2.2 鈉離子選擇電極感測表現分析 55
4.2.2.1 開環路電位量測 55
4.2.2.2 電化學阻抗頻譜分析 58
4.2.2.3 長時間電位穩定性測試 60
4.2.3 小結 61
4.3 PEDOT離子電子傳導層相對離子種類探討 62
4.3.1 PEDOT離子電子傳導層分析 62
4.3.1.1 掃描式電子顯微鏡表面分析 62
4.3.1.2 循環伏安法分析 64
4.3.2 鈉離子選擇電極感測表現分析 67
4.3.2.1 開環路電位量測 67
4.3.2.2 電化學阻抗頻譜分析 69
4.3.2.3 長時間電位穩定性測試 71
4.3.3 小結 72
4.4 離子電子傳導層電鍍方法探討 73
4.4.1 PEDOT離子電子傳導層分析 73
4.4.1.1 掃描式電子顯微鏡表面分析 73
4.4.1.2 循環伏安法分析 75
4.4.2 鈉離子選擇電極感測表現分析 79
4.4.2.1 開環路電位量測 79
4.4.2.2 電化學阻抗頻譜分析 81
4.4.2.3 長時間電位穩定性測試 82
4.4.2.4 小結 83
第五章 結論與未來展望 84
5.1 結論 84
5.2 未來展望 85
參考文獻 86
附錄 94
附錄一 不同離子選擇薄膜的鈉離子選擇電極對干擾離子的選擇性分析 94
附錄二 不同實驗條件PEDOT的剖面分析 95
附錄三 不同實驗方法PEDOT:ClO4接觸角分析 97
附錄四 X射線光電子能譜分析 98
附錄五 傅里葉轉換紅外光譜分析 105
附錄六 PEDOT:PSS與PEDOT:ClO4的離子交換性質分析 107
附錄七 計時電位法分析不同相對離子的PEDOT製成鈉離子選擇電極的水層效應 108
dc.language.isozh-TW
dc.subject固態式離子選擇電極zh_TW
dc.subject免校正zh_TW
dc.subject長時間電位穩定性zh_TW
dc.subject4-乙烯二氧?吩)zh_TW
dc.subject聚(3zh_TW
dc.subject離子電子傳導層zh_TW
dc.subjection-to-electron transduceren
dc.subjectcalibration-freeen
dc.subjectlong-term potential stabilityen
dc.subject4-ethylenedioxythiophene)en
dc.subjectpoly(3en
dc.subjectsolid-state ion-selective electrodeen
dc.title"調控聚(3,4-乙烯二氧噻吩)傳導層電鍍製程以提升固態式離子選擇電極長時間電位穩定性"zh_TW
dc.titleEnhancing Long-Term Potential Stability of a Solid-State Ion-Selective Electrode via Tuning Electrodeposition of a Poly(3,4-ethylenedioxythiophene) Transduceren
dc.typeThesis
dc.date.schoolyear106-2
dc.description.degree碩士
dc.contributor.oralexamcommittee何國川(Kuo-Chuan Ho),林正嵐(Cheng-Lan Lin),廖英志(Ying-Chih Liao),謝博全(Po-Chuan Hsieh)
dc.subject.keyword固態式離子選擇電極,離子電子傳導層,聚(3,4-乙烯二氧?吩),長時間電位穩定性,免校正,zh_TW
dc.subject.keywordsolid-state ion-selective electrode,ion-to-electron transducer,poly(3,4-ethylenedioxythiophene),long-term potential stability,calibration-free,en
dc.relation.page110
dc.identifier.doi10.6342/NTU201802756
dc.rights.note有償授權
dc.date.accepted2018-08-10
dc.contributor.author-college生物資源暨農學院zh_TW
dc.contributor.author-dept生物產業機電工程學研究所zh_TW
顯示於系所單位:生物機電工程學系

文件中的檔案:
檔案 大小格式 
ntu-107-1.pdf
  未授權公開取用
11.38 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved