請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/70667
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 楊宏智 | |
dc.contributor.author | Tzong-Yiing King | en |
dc.contributor.author | 金宗頴 | zh_TW |
dc.date.accessioned | 2021-06-17T04:34:18Z | - |
dc.date.available | 2023-08-13 | |
dc.date.copyright | 2018-08-13 | |
dc.date.issued | 2018 | |
dc.date.submitted | 2018-08-09 | |
dc.identifier.citation | [1]王小平,肖越勇,“CT導航技術及其臨床應用研究進展” 國際醫學放射學 雜誌,第35期,第一卷,第66-69頁,2012年1月。
[2]顱內立體定位導航系統,日龍儀器股份有限公司,2016年6月14日, < http://www.upwards.com.tw/ >。 [3]高醫引進機械手臂微創手術,新唐人日訊,2013年4月3日,<http://www.ntdtv.com/ >。 [4]林浩瑋,“精密定位與自動進給手術用骨骼鑽孔平台之研究,” 元智大學機 械工程研究所碩士論文,2000年。 [5]Medtronic Fusion ENT Navigation,Medtronic,April 2016, <www.youtube.com/watch?v=6RhnyTR9B1U/ >. [6]Yukio Kosugi, EIJU Watanabe, Junichi Goto, Takashi Watanabe, Satonobu Yoshimoto, Kintomo Takakura, and Jun Ikebe, “An Articulated Neurosurgical Navigation System using MRI and CT Images,” IEEE Transactions on Biomedical Engineering, Vol. 35, No. 2, pp.147-152, February 1988. [7]Tian Xia, Clint Baird, George Jallo, Kathryn Hayes, Nobuyuki Nakajima, Nobuhiko Hata, and Peter Kazanzides, “An Integrated System for Planning, Navigation and Robotic Assistance for Skull Base Surgery,” The International Journal of Medical Robotics and Computer Assisted Surgery, Vol. 4, pp. 321-330, September 2008. [8]Saul Tovar-Arriaga, Ralf Tita, Jesus Carlos Pedraza-Ortega, Efren Gorrostieta, and Willi A. Kalender, “Development of A Robotic FD-CT-Guided Navigation System for Needle Placement – Preliminary Accuracy Tests,” The International Journal of Medical Robotics and Computer Assisted Surgery, Vol. 7, pp. 225-236, April 2011. [9]陳鼎元,“機械式巡航系統於手術訓練之應用研究”國立台灣大學工學院機械工程學系碩士論文,2016年 [10]劉冠廷,“大腦假體與註冊定位器於手術訓練之研究”國立台灣大學工學院機械工程學系碩士論文,2016年 [11]黃朝陽,“無標記註冊之機械手臂導引系統應用於腦室積水引流穿刺手術”國立台灣大學工學院機械工程學系碩士論文,2017年 [12]Martins, H.A., Birk J.R., and Kelley, R.B., “Camera models based on data from two calibration, planes,” Computer Graphics and Image Processing, Vol. 17, pp. 173-180, 1981. [13]Zhang, Z. “A Flexible New Technique for Camera Calibration.” IEEE Transactions on Pattern Analysis and Machine Intelligence. Vol. 22, Number. 11, 2000, pp. 1330–1334. [14]Heikkila, J. and O. Silven. “A Four-step Camera Calibration Procedure with Implicit Image Correction.” IEEE International Conference on Computer Vision and Pattern Recognition. 1997. [15]Scaramuzza, D., A. Martinelli, and R. Siegwart. 'A Toolbox for Easy Calibrating Omindirectional Cameras.' Proceedings to IEEE International Conference on Intelligent Robots and Systems (IROS 2006). Beijing, China, October 7–15, 2006. [16]Urban, S., J. Leitloff, and S. Hinz. 'Improved Wide-Angle, Fisheye and Omnidirecitonal Camera Calibration.' ISPRS Journal of Photogrammetry and Remove Sensing. Vol. 108, pp.72–79. , 2015 [17]Gruen, A. and Huang, T.S., “Calibration and orientation of camerasin computer vision,” Springer-Verlag Berlin Heidelberg, 2001. [18]Hartley, R.I. and Saxena, T., “The Cubic Rational PolynomialCamera Model,” DARPA, pp. 649-654, 1997. [19]Reinhard, K., Karsten, S. and Andreas, K., “Computer visionthree-dimensional data from images”, Springer-Verlag, SingaporePte. Ltd, 1998. [20]Tsai, R.Y., “A versatile camera calibration technique forhigh-accuracy 3D machine vision metrology using off-the-shelf TVcameras and lenses,” IEEE Journal of Robotics and Automation, Vol.RA-3, No. 4, pp. 323 - 344, Aug. 1987. [21]Tsai, R.Y. and Lenz, R.K., “Technique for calibration of the scalefactor and image center for high accuracy 3-D machine visionmetrology,” IEEE transactions on pattern analysis and machineintelligence, Vol. 10, No. 5, Sep. 1988. [22]Surgical Navigation System, Medtronic, <https://www.medtronic.com/us-en/healthcare-professionals/products /neurological/surgical-navigation-systems/stealthstation.html> [23]Fluoro 3D Registration and Navigation Vision RFD 3D, Brainlab, October 2016, <https://www.youtube.com/watch?v=VjaWK6xHSqQ> [24]Kick EM, Brainlab, <https://www.brainlab.com/surgery-products/overview-platform-products/kick-em/> [25]SpineMask Non-Invasive Tracker, Stryker, <https://www.strykerneurotechnology.com/spinemask-non-invasive-tracker> [26]Automatic Image Registration for Brainlab Navigation, Brainlab, April 2014, <https://www.youtube.com/watch?v=MZ7vkkRtaz0> [27]Tutorials For RobotStudio, ABB, <https://new.abb.com/products/robotics/robotstudio/tutorials> [28]Automated Surgical Planning System for Spinal Fusion Surgery with Three-Dimensional Pedicle Model, Scientific Figure on ResearchGate, <https://www.researchgate.net/A-vertebra-fused-using-pedicle-screws_fig1_221064176> | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/70667 | - |
dc.description.abstract | 隨著電腦運算速度與術中影像設備技術的提升,醫學影像也臻於成熟,衍生多樣應用可能性,使得微創手術概念得以實踐,而醫學影像導航系統在微創手術中扮演不可或缺的角色,然而在臨床場域中導航系統仍不算普及,可能原因有操作流程繁複且成本高昂等,因此本研究以自動化且使用操作簡易為任務標的,希冀能順利融入現行手術流程中,提高醫師採用意願。
在過去本實驗室研究成果中,成功建立結合3D 掃描技術之機械式導航系統,實現無標記定位,由患者身體表面特徵建立患者位置與影像之座標關係,並以顱部假體進行導航誤差分析,但此系統於使用流程中仍須手動操作,操作機械手臂進行近距離的3D掃描量測定位,因此流程複雜度提升,也可能因不慎操作導致器械勿觸患部產生感染風險,並掃描定位完畢後,必須人工標示特徵點以進行座標系註冊,流程複雜且費時,並且無法適用於背部無明顯特徵點的脊椎手術中。 本研究精進機械式導航系統流程自動化,沿襲過去雷射導引機械手臂架構,結合自行開發之立體視覺系統,立體視覺系統拍攝範圍只要涵蓋定位器即可自動辨識定位點完成註冊,使導航系統更加接近臨床需求,並且整合系統軟硬體各部分以C++程式語言開發了導航規畫軟體,此一軟體具備醫學影像顯示、自動定位與註冊、穿刺路徑規劃並輸出等等功能,高度整合性與自動化技術更可推展到近年逐漸引進的術中影像設備,當患者位置變動時得以快速重建與影像之座標關係,近乎無縫搭配影像即時導航。最終針對脊椎手術進行本研究開發之導航系統誤差分析與探討,以仿脊椎模型進行測試,提出誤差產生原因以及未來改良方向。 | zh_TW |
dc.description.abstract | With a leap of computer technology and medical image, various potential applications are derived. The concept of minimally invasive surgery becomes practical, and medical image navigation system plays an important role in the surgery. However, the navigation system is still not widely applied in the operating room. The complicated operation and high cost are the main factors. This study based on automation is hoped to integrate the navigation system developed into the current surgical procedures and improve the physicians’ practice.
In the previous research results of our laboratory, a mechanical navigation system combined with 3D scanning technology was successfully established to realize the marker-free registration. The relationship between the patient's position and the image was established by the surface features of the patient's body. However, the system still needs to be manually operated during the navigation process. The robot needs to be operated neer the patient for 3D scanning measurement. The risk of infection may increase. Also the feature points on the patient need to be manually marked for registration. This procedure is also complicated and time consuming. Furthermore, the 3D scanning cannot be applied to spinal surgery without obvious feature points on the back. This research focuses on the process automation of a laser-guided mechanical navigation system. This navigation system is combined with the stereo vision system, which can automatically identify the marker. A development of a software including medical image display, automatic registration, puncture path planning, etc has been made. This technology can be equally applied to the intraoperative image equipment. When the patient's position changes, the relationship between the image and the patient can be quickly reconstructed, and physicians can carry out instant navigation accordingly. Finally, we use the spine model for the error analysis and discus the navigation system developed in this study. The causes of error and future improvement directions are proposed in conclusions. | en |
dc.description.provenance | Made available in DSpace on 2021-06-17T04:34:18Z (GMT). No. of bitstreams: 1 ntu-107-R05522706-1.pdf: 3613477 bytes, checksum: cc92a702e1ce6dbd5f8d594ae71c2581 (MD5) Previous issue date: 2018 | en |
dc.description.tableofcontents | 摘要 I
Abstract II 目錄 IV 圖目錄 VII 表目錄 IX 第一章 緒論 1 1.1 研究背景 1 1.2 研究動機與目的 1 1.3 研究架構 2 第二章 文獻回顧 3 2.1 手術導航系統 3 2.2 相機模型與內外部參數校正 4 第三章 導航系統架構 6 3.1 雷射導引機械手臂 6 3.1.1 ABB IRB-120 六軸機械手臂 7 3.1.2 單點雷射 8 3.2 立體視覺系統 9 3.2.1 雙標記定位器 10 3.2.2 立體視覺系統標記辨識 10 3.3 自動註冊導航規劃軟體 11 3.3.1 三維醫學影像顯示與標記辨識 12 3.3.2 自動註冊 12 3.3.3 穿刺路徑規劃 13 3.3.4 機械手臂導引位置運算 13 小結 13 第四章 雷射導引機械手臂 15 4.1 ABB IRB-120 機械手臂 15 4.2 單點雷射 17 4.2.1 校正方法 說明 18 4.2.2 校正方法 初校 18 4.2.3 校正方法 精校 19 4.2.4 驗證方法 22 小結 22 第五章 立體視覺系統 23 5.1 立體視覺原理 23 5.2 硬體設備介紹 24 5.2.1 相機 24 5.2.2 鏡頭 25 5.2.3 紅外光LED環形光源 25 5.2.4 紅外光濾鏡 26 5.2.5 雙標記定位器 26 5.3 相機參數校正 28 5.3.1 相機內部參數與失真參數校正 28 5.3.2 主、副相機相對位置校正 31 5.4 紅外線反射珠位置計算 34 5.5 立體視覺系統與機械手臂末端之相對位置校正 39 小結 41 第六章 自動註冊導航規畫軟體 42 6.1三維醫學影像顯示與標記辨識 42 6.2 自動註冊 43 6.3 穿刺路徑規劃 44 6.4機械手臂導引路徑運算 45 小結 47 第七章 導航系統設定與手術導引流程 48 7.1 導航系統設定 48 7.2 手術導引流程 49 第八章 導引結果與誤差探討 52 8.1 壓克力模型測試 52 8.2 脊椎假體測試 54 小結 57 第九章 結論與未來展望 59 9.1 結論 59 9.2 未來展望 60 參考文獻 62 | |
dc.language.iso | zh-TW | |
dc.title | 影像辨識自動註冊應用於機械式手術導航系統 | zh_TW |
dc.title | Robotic Surgical Navigation System with Automatic Registration Using Image Recognition | en |
dc.type | Thesis | |
dc.date.schoolyear | 106-2 | |
dc.description.degree | 碩士 | |
dc.contributor.oralexamcommittee | 蕭輔仁,王兆璋,楊炳德 | |
dc.subject.keyword | 機械式導航系統,流程自動化,自動註冊,雷射導引,立體視覺, | zh_TW |
dc.subject.keyword | Mechanical Navigation System,Procedure Automation,Automatic Registration,Laser Guide,Stereo Vision, | en |
dc.relation.page | 64 | |
dc.identifier.doi | 10.6342/NTU201802907 | |
dc.rights.note | 有償授權 | |
dc.date.accepted | 2018-08-10 | |
dc.contributor.author-college | 工學院 | zh_TW |
dc.contributor.author-dept | 機械工程學研究所 | zh_TW |
顯示於系所單位: | 機械工程學系 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-107-1.pdf 目前未授權公開取用 | 3.53 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。