請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/70656
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 范致豪(Chihhao Fan) | |
dc.contributor.author | Yi-Yin Chueh | en |
dc.contributor.author | 闕亦吟 | zh_TW |
dc.date.accessioned | 2021-06-17T04:33:57Z | - |
dc.date.available | 2020-08-23 | |
dc.date.copyright | 2018-08-23 | |
dc.date.issued | 2018 | |
dc.date.submitted | 2018-08-10 | |
dc.identifier.citation | 1. Abbaspour, K. C. (2008). 'SWAT Calibrating and Uncertainty Programs.'.
2. Abbaspour, K. C.; Rouholahnejad, E.; Vaghefi, S.; Srinivasan, R.; Yang, H. and Kløve, B. (2015). 'A continental-scale hydrology and water quality model for Europe: Calibration and uncertainty of a high-resolution large-scale SWAT model.' Journal of hydrology, Vol. 524, No. pp. 733-752. 3. Abbaspour, K. C.; Yang, J.; Maximov, I.; Siber, R.; Bogner, K.; Mieleitner, J.; Zobrist, J. and Srinivasan, R. (2007). 'Modelling hydrology and water quality in the pre-alpine/alpine Thur watershed using SWAT.' Journal of hydrology, Vol. 333, No. 2, pp. 413-430. 4. Albek, M. and Albek, E. (2003). Predicting the effects of climate change on the sediment yield of watersheds. Diffuse Pollution Conference, Dublin. G. 5. Allison, J. D. and Allison, T. L. (2005). 'Partition coefficients for metals in surface water, soil, and waste.' Rep. EPA/600/R-05, Vol. 74. 6. Alukwe, I. A. and Dillaha, T. (2014). 'Effects of watershed land use data on HSPF water quality in the upper opequon watershed in Northern Virginia, USA.' American Journal of Water Resources, Vol. 2, No. 3, pp. 54-62. 7. Arnold, J. G.; Moriasi, D. N.; Gassman, P. W.; Abbaspour, K. C.; White, M. J.; Srinivasan, R.; Santhi, C.; Harmel, R.; Van Griensven, A. and Van Liew, M. W. (2012). 'SWAT: Model use, calibration, and validation.' Transactions of the ASABE, Vol. 55, No. 4, pp. 1491-1508. 8. Arnold, J. G.; Srinivasan, R.; Muttiah, R. S. and Williams, J. R. (1998). 'Large area hydrologic modeling and assessment part I: model development.' JAWRA Journal of the American Water Resources Association, Vol. 34, No. 1, pp. 73-89. 9. Asselman, N. E.; Middelkoop, H. and Van Dijk, P. M. (2003). 'The impact of changes in climate and land use on soil erosion, transport and deposition of suspended sediment in the River Rhine.' Hydrological Processes, Vol. 17, No. 16, pp. 3225-3244. 10. Bagnold, R. A. (1977). 'Bed load transport by natural rivers.' Water Resources Research, Vol. 13, No. 2, pp. 303-312. 11. Banu, Z.; Chowdhury, M. S. A.; Hossain, M. D. and Nakagami, K. i. (2013). 'Contamination and ecological risk assessment of heavy metal in the sediment of Turag River, Bangladesh: An index analysis approach.' Journal of water Resource and Protection, Vol. 5, No. 02, pp. 239. 12. Bravard, J.-P. P., Francois (2009). Geomorphology of Streams and Rivers. Encyclopedia of Inland Waters. G. E. Likens. Oxford, Academic Press: 387-395. 13. Brunetti, M.; Maugeri, M. and Nanni, T. (2001). 'Changes in total precipitation, rainy days and extreme events in northeastern Italy.' International Journal of Climatology, Vol. 21, No. 7, pp. 861-871. 14. Caruso, B. S. (2004). 'Modeling metals transport and sediment/water interactions in a mining impacted mountain stream.' JAWRA Journal of the American Water Resources Association, Vol. 40, No. 6, pp. 1603-1615. 15. Cho, J. H. and Lee, J. H. (2015). 'Watershed model calibration framework developed using an influence coefficient algorithm and a genetic algorithm and analysis of pollutant discharge characteristics and load reduction in a TMDL planning area.' Journal of Environmental Management, Vol. 163, No. pp. 2-10. 16. Chow, V. T.; Maidment, D. R. and Mays, L. (1988). 'Applied Hydrology.' Advances in Fluid Mechanics VII, Vol. 339, No. pp. 63-70. 17. De Smedt, F.; Vuksanovic, V.; Van Meerbeeck, S. and Reyns, D. (1998). A time-dependent flow model for heavy metals in the Scheldt estuary. Trace Metals in the Westerschelde Estuary: A Case-Study of a Polluted, Partially Anoxic Estuary, Springer: 143-155. 18. Defne, Z.; Spitz, F. J.; DePaul, V. and Wool, T. A. (2017). 'Toward a Comprehensive Water-Quality Modeling of Barnegat Bay: Development of ROMS to WASP Coupler.' Journal of Coastal Research, Vol. No. pp. 34-45. 19. Du, X.; Li, X.; Zhang, W. and Wang, H. (2014). 'Variations in source apportionments of nutrient load among seasons and hydrological years in a semi-arid watershed: GWLF model results.' Environmental Science and Pollution Research, Vol. 21, No. 10, pp. 6506-6515. 20. Ekdal, A.; Gürel, M.; Guzel, C.; Erturk, A.; Tanik, A. and Gonenc, I. (2011). 'Application of WASP and SWAT models for a Mediterranean coastal lagoon with limited seawater exchange.' J. Coast. Res, Vol. 64, No. pp. 1023-1027. 21. Ernst, M. R. and Owens, J. (2009). 'Development and application of a WASP model on a large Texas reservoir to assess eutrophication control.' Lake and Reservoir Management, Vol. 25, No. 2, pp. 136-148. 22. Fang, H.; Huang, L.; Wang, J.; He, G. and Reible, D. (2016). 'Environmental assessment of heavy metal transport and transformation in the Hangzhou Bay, China.' Journal of Hazardous Materials, Vol. 302, No. pp. 447-457. 23. Feyereisen, G.; Strickland, T.; Bosch, D. and Sullivan, D. (2007). 'Evaluation of SWAT manual calibration and input parameter sensitivity in the Little River watershed.' Transactions of the ASABE, Vol. 50, No. 3, pp. 843-855. 24. Hakanson, L. (1980). 'An ecological risk index for aquatic pollution control. A sedimentological approach.' Water research, Vol. 14, No. 8, pp. 975-1001. 25. Hameed, L. K. and Ali, S. T. (2013). 'Estimating of Manning’s roughness coefficient for Hilla River through calibration using HEC-RAS model.' Jordan Journal of Civil Engineering, Vol. 159, No. 701, pp. 1-10. 26. Hicks, F. E. and Peacock, T. (2005). 'Suitability of HEC-RAS for Flood Forecasting.' Canadian Water Resources Journal / Revue canadienne des ressources hydriques, Vol. 30, No. 2, pp. 159-174. 27. Jennings, E.; Allott, N.; Pierson, D. C.; Schneiderman, E. M.; Lenihan, D.; Samuelsson, P. and Taylor, D. (2009). 'Impacts of climate change on phosphorus loading from a grassland catchment: Implications for future management.' Water research, Vol. 43, No. 17, pp. 4316-4326. 28. Kerr, J. G. C., Colin A. (2017). 'Erosion of the Alberta badlands produces highly variable and elevated heavy metal concentrations in the Red Deer River, Alberta.' Science of The Total Environment, Vol. 596-597, No. pp. 427-436. 29. Kiniry, J.; R. Williams, J. and Srinivasan, R. (2000). 'Soil and Water Assessment Tool User's Manual', 30. Knightes, C.; Kate, S.; Avant, B.; Cyterski, M.; Washington, J. and Prieto, L. (2016). Simulating the Fate and Transport of an Acid Mine Drainage Release Using the WASP model. AGU Fall Meeting Abstracts. 31. Lai, Y. C.; Tu, Y. T.; Yang, C. P.; Surampalli, R. Y. and Kao, C. M. (2013). 'Development of a water quality modeling system for river pollution index and suspended solid loading evaluation.' Journal of hydrology, Vol. 478, No. pp. 89-101. 32. Mishra, A.; Kar, S. and Singh, V. (2007). 'Determination of runoff and sediment yield from a small watershed in sub‐humid subtropics using the HSPF model.' Hydrological Processes: An International Journal, Vol. 21, No. 22, pp. 3035-3045. 33. Mustafa, A. S.; Sulaiman, S. O. and Hussein, O. M. (2016). 'Application of SWAT Model for Sediment Loads from Valleys Transmitted to Haditha Reservoir.' Journal of Engineering, Vol. No. 1, pp. 184-197%V 122. 34. Narsimlu, B.; Gosain, A. K.; Chahar, B. R.; Singh, S. K. and Srivastava, P. K. (2015). 'SWAT model calibration and uncertainty analysis for streamflow prediction in the Kunwari River Basin, India, using sequential uncertainty fitting.' Environmental Processes, Vol. 2, No. 1, pp. 79-95. 35. Nash, J. E. and Sutcliffe, J. V. (1970). 'River flow forecasting through conceptual models part I—A discussion of principles.' Journal of hydrology, Vol. 10, No. 3, pp. 282-290. 36. Neitsch, S.; Arnold, J.; Kiniry, J.; Williams, J. and King, K. (2005). 'Soil and water assessment tool theoretical documentation. Grassland.' Soil and Water Research Laboratory, Temple,. 37. Niraula, R.; Kalin, L.; Srivastava, P. and Anderson, C. J. (2013). 'Identifying critical source areas of nonpoint source pollution with SWAT and GWLF.' Ecological Modelling, Vol. 268, No. pp. 123-133. 38. Niu, Z.; Chen, Y.; Mi, Z.; Li, P.; Guo, L. and Li, Z. (2012). 'Simulation of Rainwater Landscape Use in Eco-town Based on SWMM and WASP Models.' China Water & Wastewater, Vol. 28, No. 11, pp. 50-52. 39. Nizzetto, L.; Bussi, G.; Futter, M. N.; Butterfield, D. and Whitehead, P. G. (2016). 'A theoretical assessment of microplastic transport in river catchments and their retention by soils and river sediments.' Environmental Science: Processes & Impacts, Vol. 18, No. 8, pp. 1050-1059. 40. Ochiere, H.; Onyando, J. and Kamau, D. (2015). Simulation of Sediment Transport in the Canal Using the Hec-Ras (Hydrologic Engineering Centre-River Analysis System) In an Underground Canal in Southwest Kano Irrigation Scheme–Kenya, Engineering Department/Egerton University, Kenya, International Journal of Engineering Science. 41. Panagopoulos, Y.; Makropoulos, C. and Mimikou, M. (2011). 'Reducing surface water pollution through the assessment of the cost-effectiveness of BMPs at different spatial scales.' Journal of Environmental Management, Vol. 92, No. 10, pp. 2823-2835. 42. Parhi, P. K.; Sankhua, R. and Roy, G. (2012). 'Calibration of channel roughness for Mahanadi River,(India) using HEC-RAS model.' Journal of water Resource and Protection, Vol. 4, No. 10, pp. 847. 43. Park, J. Y.; Park, G. A. and Kim, S. J. (2013). 'Assessment of Future Climate Change Impact on Water Quality of C hungju L ake, S outh K orea, Using WASP Coupled with SWAT.' JAWRA Journal of the American Water Resources Association, Vol. 49, No. 6, pp. 1225-1238. 44. Qi, Z.; Kang, G.; Chu, C.; Qiu, Y.; Xu, Z. and Wang, Y. (2017). 'Comparison of SWAT and GWLF Model Simulation Performance in Humid South and Semi-Arid North of China.' Water, Vol. 9, No. 8, pp. 567. 45. Ribarova, I.; Ninov, P. and Cooper, D. (2008). 'Modeling nutrient pollution during a first flood event using HSPF software: Iskar River case study, Bulgaria.' Ecological Modelling, Vol. 211, No. 1, pp. 241-246. 46. Rodriguez, L. B.; Cello, P. A.; Vionnet, C. A. and Goodrich, D. (2008). 'Fully conservative coupling of HEC-RAS with MODFLOW to simulate stream–aquifer interactions in a drainage basin.' Journal of hydrology, Vol. 353, No. 1, pp. 129-142. 47. Sadeghi, S.; Harchegani, M. K. and Younesi, H. (2012). 'Suspended sediment concentration and particle size distribution, and their relationship with heavy metal content.' Journal of earth system science, Vol. 121, No. 1, pp. 63-71. 48. Saleh, A. and Du, B. (2004). 'Evaluation of SWAT and HSPF within BASINS program for the upper North Bosque River watershed in central Texas.' Transactions of the ASAE, Vol. 47, No. 4, pp. 1039. 49. Santhi, C.; Arnold, J. G.; Williams, J. R.; Dugas, W. A.; Srinivasan, R. and Hauck, L. M. (2001). 'Validation of the swat model on a large rwer basin with point and nonpoint sources.' JAWRA Journal of the American Water Resources Association, Vol. 37, No. 5, pp. 1169-1188. 50. Shen, Z. Y.; Chen, L. and Chen, T. (2012). 'Analysis of parameter uncertainty in hydrological and sediment modeling using GLUE method: a case study of SWAT model applied to Three Gorges Reservoir Region, China.' Hydrology and Earth System Sciences, Vol. 16, No. 1, pp. 121. 51. Shimp, R. J.; Larson, R. J. and Boethxing, R. S. (1990). 'Use of biodegradation data in chemical assessment.' Environmental Toxicology and Chemistry, Vol. 9, No. 11, pp. 1369-1377. 52. Singh, V.; Bankar, N.; Salunkhe, S. S.; Bera, A. K. and Sharma, J. (2013). 'Hydrological stream flow modelling on Tungabhadra catchment: parameterization and uncertainty analysis using SWAT CUP.' Current Science, Vol. No. pp. 1187-1199. 53. Sloan, P. G. and Moore, I. D. (1984). 'Modeling subsurface stormflow on steeply sloping forested watersheds.' Water Resources Research, Vol. 20, No. 12, pp. 1815-1822. 54. Strauch, M.; Lima, J. E. F. W.; Volk, M.; Lorz, C. and Makeschin, F. (2013). 'The impact of Best Management Practices on simulated streamflow and sediment load in a Central Brazilian catchment.' Journal of Environmental Management, Vol. 127, No. pp. S24-S36. 55. Talebizadeh, M.; Morid, S.; Ayyoubzadeh, S. A. and Ghasemzadeh, M. (2010). 'Uncertainty analysis in sediment load modeling using ANN and SWAT model.' Water Resources Management, Vol. 24, No. 9, pp. 1747-1761. 56. Tuset, J.; Vericat, D. and Batalla, R. (2016). 'Rainfall, runoff and sediment transport in a Mediterranean mountainous catchment.' Science of The Total Environment, Vol. 540, No. pp. 114-132. 57. Vaighan, A. A.; Talebbeydokhti, N. and Bavani, A. M. (2017). 'Assessing the impacts of climate and land use change on streamflow, water quality and suspended sediment in the Kor River Basin, Southwest of Iran.' Environmental Earth Sciences, Vol. 76, No. 15, pp. 543. 58. Vargas‐Luna, A.; Crosato, A. and Uijttewaal, W. S. (2015). 'Effects of vegetation on flow and sediment transport: comparative analyses and validation of predicting models.' Earth Surface Processes and Landforms, Vol. 40, No. 2, pp. 157-176. 59. Vilaysane, B.; Takara, K.; Luo, P.; Akkharath, I. and Duan, W. (2015). 'Hydrological Stream Flow Modelling for Calibration and Uncertainty Analysis Using SWAT Model in the Xedone River Basin, Lao PDR.' Procedia Environmental Sciences, Vol. 28, No. pp. 380-390. 60. Wang, S.; Fu, B.; Piao, S.; Lü, Y.; Ciais, P.; Feng, X. and Wang, Y. (2016). 'Reduced sediment transport in the Yellow River due to anthropogenic changes.' Nature Geoscience, Vol. 9, No. 1, pp. 38. 61. Williams, J. R. and Berndt, H. D. (1977). 'Sediment Yield Prediction Based on Watershed Hydrology.' Transactions of the ASAE, Vol. 20, No. 6, pp. 1100. 62. Wool, T. A.; Ambrose, R. B.; Martin, J. L.; Comer, E. A. and Tech, T. (2006). 'Water quality analysis simulation program (WASP).' User’s Manual, Version, Vol. 6. 63. Xiong, Y. (2010). 'Coupling sediment transport and water quality models', Mississippi State University. 64. Yang, C.-p.; Lung, W.-s.; Kuo, J.-T.; Lai, J.-S.; Wang, Y.-m. and Hsu, C.-h. (2012). 'Using an integrated model to track the fate and transport of suspended solids and heavy metals in the tidal wetlands.' International Journal of Sediment Research, Vol. 27, No. 2, pp. 201-212. 65. Yang, C. P.; Yu, Y. T. and Kao, C. M. (2012). Impact of Climate Change on Kaoping River Water Quality. Applied Mechanics and Materials, Trans Tech Publ. 66. Yesuf, H. M.; Assen, M.; Alamirew, T. and Melesse, A. M. (2015). 'Modeling of sediment yield in Maybar gauged watershed using SWAT, northeast Ethiopia.' Catena, Vol. 127, No. pp. 191-205. 67. 方孟德; 吳培堯; 賴允傑; 劉泰銘 and 梁又仁 (2014). '國內外底泥品質管理策略之探討.' 土壤及地下水污染整治, Vol. 1, No. 1, pp. 15-40. 68. 王惟申(2007). '水質水理模式整合應用於水質模擬之研究', 未出版之碩(博)士論文 69. 行政院環境保護署, '土壤及地下水污染整治法', 修正日期:民國99年2月3日. 70. 行政院環境保護署, '水污染防治法', 修正日期:民國105年12月07日. 71. 行政院環境保護署, '地面水體分類及水質標準', 修正日期:民國106年09月13日. 72. 行政院環境保護署, '底泥品質指標之分類管理及用途限制辦法', 發布日期:民國101年01月04日. 73. 行政院環境保護署, '推動水污染總量管制作業規定', 修正日期:民國102年04月03日. 74. 行政院環境保護署, '環境影響評估河川水質評估模式技術規範 ', 訂定時間:中華民國100年11月29日. 75. 行政院環境保護署(2011), '南部地區河川污染整治與水質改善策略規劃及執行計畫.', 京華工程顧問公司(EPA-100-G103-02-230). 76. 行政院環境保護署(2012), '水體環境水質改善及經營管理計畫'. 77. 行政院環境保護署(2014), '重點河川污染整治策略評估與行動整合計畫 ', 台灣曼寧工程顧問股份有限公司(計畫編號:EPA-103-G103-02-116). 78. 行政院環境保護署(2015), '重點河川污染整治策略評析及執行計畫期末報告', 美商傑明工程顧問(股)台灣分公司 (計畫編號:EPA-104-G103-02-116). 79. 行政院環境保護署(2016), '105年度河川污染整治政策評估及總量管制整合執行計畫(南區)', 磐誠工程顧問有限公司(計畫編號:EPA-105-G103-02-A212). 80. 行政院環境保護署(2016), '「二仁溪污染整治小組及再生願景聯繫會報」 第 28 次會議 會議資料 (民國105年08月24日 )'. 81. 行政院環境保護署(2017), '106 年南區河川污染整治策略及行動整合執行計畫', 台頂顧問股份有限公司 (計畫編號:EPA-106-G103-02-A103). 82. 行政院環境保護署(2017), '106年度河川污染總量削減整合執行及整治策略評估計畫(北區)期末報告', 美商傑明工程顧問(股)台灣分公司(計畫編號:EPA-106-G103-03-A110). 83. 行政院環境保護署(2018).'水質保護網', https://water.epa.gov.tw/, 檢索日期:2018年5月17日. 84. 行政院環境保護署水保處新聞稿(2016年1月6日).'環保署修正放流水標準增訂應特予保護農地水體之重金屬管制限值', http://a0-moenrhome.epa.gov.tw/epa-news-repository-web/news/8a88e58551a5a829015215e0da17003a. 85. 行政院環境保護署全國環境水質監測網(2018).'河川資料查詢', http://wq.epa.gov.tw/Code/?Languages=tw., 檢索日期:2018年1月5日. 86. 吳芳池(2003). '河川流域管理-WASP水質模式評估愛河之整治方案', 未出版之碩(博)士論文, 國立中山大學 環境工程研究所, 159. 87. 吳振佑(2017). '結合水質模式與成本效益分析評估水環境品質提升策略之研究', 未出版之碩(博)士論文, 國立臺灣大學 生物環境系統工程學研究所, 1-73. 88. 吳道仁(2005). '二仁溪流域底泥與水體中重金屬之境況.' 土壤與環境, Vol. 8, No. 1, pp. 73-81. 89. 吳蕙雯(2016). '應用 SWAT 模式模擬來社溪集水區土砂與逕流之產出', 未出版之碩(博)士論文, 中興大學 水土保持學系所, pp.1-61. 90. 李皓瀅(2015). '阿公店溪水體, 底泥重金屬污染之調查', 未出版之碩(博)士論文, 國立高雄海洋科技大學 海洋環境工程研究所, 91. 林子平; 連宛渝; 林裕彬 and 江莉琦(2016). '土地及氣候變遷情境對流量之影響.' 臺灣水利, Vol. 64, No. 3, pp. 52-65. 92. 林文賜; 林昭遠; 周文杰 and 黃碧慧(2006). '集水區坡面泥砂產量推估模式建立之研究.' 明道學術論壇, Vol. 2, No. 2, pp. 55-67. 93. 林永峻; 丁振章; 鄒宗儒; 李鴻源; 賴進松 and 黃杰立(2009). 'HEC-RAS 模式在野溪水理演算之應用與探討.' . 94. 林永峻; 張倉榮; 王嘉和; 賴進松 and 譚義績(2013). '氣候變遷下高屏溪堤防風險度之研究.' 農業工程學報, Vol. 59, No. 4, pp. 81-99. 95. 林冠州(2017). '應用非點源汙染模式SWAT模擬翡翠水庫上游集水區流量及氮素之輸出與移動', 未出版之碩(博)士論文, 國立臺灣師範大學 地理學系, 173. 96. 林思達(2009). '改良 GWLF 模式應用於翡翠水庫入流量模擬', 未出版之碩(博)士論文, 國立中央大學 水文所, 1-70. 97. 林昭遠; 劉志宇 and 蔡真珍(2004). '泥岩集水區降雨-逕流歷線建置之研究.' 98. 林智恩(2010). '河川水質及底泥管理策略之研究', 未出版之碩(博)士論文, 國立中山大學 環境工程研究所. 99. 侯嘉琦(2016). '利用 WASP 推估河川涵容能力及研擬管理策略-以屏東縣武洛溪為例', 未出版之碩(博)士論文, 屏東科技大學 環境工程與科學系所, 1-113. 100. 科技部(2013), '中部科學工業園區第四期(二林園區)開發計畫環境影響差異分析報告及變更審查結論(定稿本)-附錄 '. 101. 美國環境保護署官方網站(2018).'Environmental Modeling Community of Practice:WASP7 Course', U. S. E. P. Agency, https://www.epa.gov/ceam/wasp7-course. 102. 徐志宏(2004). '濕地泥沙與水質模擬-以二重疏洪道濕地為例', 未出版之碩(博)士論文, 臺灣大學土木工程學研究所, 1-79. 103. 桃園市政府環境保護局, '桃園市南崁溪流域廢(污)水重金屬銅排放總量管制方式草案', 公告日期:民國106年06月05日. 104. 高雄市政府水利局(2012), '二仁溪流域水質改善規劃及細部設計計畫(參考資料)'. 105. 國家發展委員會(2010), '國家氣候變遷調適政策綱領'. 106. 張永昌(2013). '高屏溪下游地區沉積物中重金屬污染評估', 未出版之碩(博)士論文, 輔英科技大學 環境工程與科學系. 107. 章書瑋(2006). '淡水河重金屬傳輸模式之發展', 未出版之碩(博)士論文, 中央大學水文與海洋科學研究所, 1-115. 108. 許盈松; 蔡俊鋒; 魏綺瑪 and 黃宏莆(2007). '水庫泥沙濁度與濃度率定關係研究—以石門水庫為例.' 農業工程學報, Vol. 53, No. 1, pp. 62-71. 109. 陳建宏(2013). '感潮河川水質動態模式之研究.' 未出版之碩(博)士論文, 國立臺灣大學 土木工程學研究所, 1-220. 110. 陳瑋茹(2008). '修正GWLF模式應用於氣候變遷對七家灣溪流量與泥砂量之影響評估', 未出版之碩(博)士論文, 國立臺灣大學 生物環境系統工程學研究所, 1-122. 111. 傅子龍(2016). '臺灣大漢溪底泥重金屬含量調查與可能污染源之探討', 未出版之碩(博)士論文, 國立臺灣大學 農業化學研究所, 1-107. 112. 曾永祥(1998). '二仁溪水體中鐵, 鉛與銅之相態硏究', 未出版之碩(博)士論文, 國立臺灣大學 海洋研究所. 113. 曾若綺(2018). 'WASP 水質模式探討南崁溪流域重金屬銅總量管制策略之研究', 未出版之碩(博)士論文, 淡江大學 水資源及環境工程學系, 1-74. 114. 黃國銘(2003). '淡水河系懸浮顆粒與沉積物重金屬之時空及沉降變化之硏究', 未出版之碩(博)士論文, 國立臺灣大學 海洋硏究所. 115. 黃勝頂(2002). '河川近自然工法之設計及其高水分析—以台中地區筏子溪為例', 未出版之碩(博)士論文, 中原大學 土木工程研究所, 1-78. 116. 黃群展; 李明旭; 童慶斌 and 許少瑜(2017). '利用跨尺度天氣預報決定解除限水時間—以民國100年石門水庫為例.' 農業工程學報, Vol. 63, No. 3, pp. 60-73. 117. 經濟部水利署(水文年報', http://gweb.wra.gov.tw/wrhygis/. 118. 經濟部水利署(2006), '水庫集水區非點源污染傳輸最適用模式之建立與應用(1/2)'. 119. 經濟部水利署第二河川局(2012), '頭前溪流域支流上坪溪治理計畫檢討及規劃(1/2)', 京華工程顧問股份有限公司(計畫編號:MOEAWRA 1000310). 120. 經濟部水利署第六河川局(2007), '二仁溪河川情勢調查計畫 ', 財團法人成大研究發展基金會(095-B-01030-008-010). 121. 潘丁平(2011). '以 SWAT 模式評估土地利用變遷對河川流量及泥砂產量的影響: 以 Phu Luong 集水區為例', 未出版之碩(博)士論文, 國立屏東科技大學 熱帶農業暨國際合作系所. 122. 蔡元芳; 林庚翰; 蘇文瑞 and 陳晉琪(2018). '山區聚落複合式災害之危害評估.' 地理學報, Vol. No. 88, pp. 1-30. 123. 蔡光榮 and 陳建富(2005). '「科技短文」遙測技術應用於台灣中部集集地震災區崩塌地植生處理工程之植生指數評估.' 航測及遙測學刊, Vol. 10, No. 2, pp. 203-212. 124. 鄭森雄(2009). 台灣之河川污染及其與生態環境之關係. 台美環保及再生研究會;美東南區中華學人協會. 125. 錢寧and萬兆惠(2003). '泥砂運動力學', 北京, 科學出版社. 126. 蘇群仁(1999). '不同粒徑底泥顆粒中重金屬分佈特性之研究', 未出版之碩(博)士論文, 國立交通大學 環境工程系所. 127. 行政院環境保護署(2010), '底泥品質管理與管制調查計畫 期末報告書 (計畫主持人:方孟德)', 財團法人工業技術研究院 (計畫編號:EPA-98-GA101-03-A076). 128. 行政院環境保護署(2017), '106年度河川污染總量削減整合執行及整治策略評估計畫(北區)', 美商傑明工程顧問(股)台灣分公司 (計劃編號:EPA-106-G103-03-A110). | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/70656 | - |
dc.description.abstract | 重金屬在河川中的污染分佈受地表水傳輸和沈積作用所控制,污染物質除了於水體環境中進行傳遞和擴散外,溶解態重金屬和水體中的懸浮固體結合形成吸附態重金屬沉積於底泥,底泥重金屬受到擾動再次懸浮於河川水體中,此為河川二次污染的重要原因。爰此,本研究結合土壤水文評估模式與水質模式,探討河川中懸浮固體的濃度對水層和底泥層的重金屬濃度分布的影響;河川懸浮固體輸出推估乃運用水土評估工具SWAT建立二仁溪集水區土砂推估模式,將集水區內氣候條件、土壤性質資料、土地利用以及農地作物種類納入考慮,模擬集水區內流量與泥沙的傳輸情形,並藉由SWAT-CUP校正SWAT的模擬流量;重金屬流布方面,蒐集環保署針對二仁溪流域內的事業放流水檢測濃度值和重金屬排放總量管制制度,選用重金屬銅做為模擬對象,計算各子流域的污染排放量,建置二仁溪WASP水質模式。依據環保署對二仁溪重金屬污染整治策略以及未來氣候推估情境,設計枯水時期懸浮固體產出變化、加嚴工廠重金屬放流水總量管制標準和氣候變遷RCP4.5情境,分析集水區內重金屬分布差異的影響。
從水質模擬結果分析顯示,水中懸浮固體濃度高容易使水中溶解態重金屬銅附著於懸浮固體上形成吸附態重金屬銅;而重金屬主要是以吸附態形式存在於水層和底泥層,而高濃度的水中吸附態重金屬銅也使得底泥層重金屬銅濃度更為顯著。在枯水時期降雨量減少,二仁溪整體的泥沙產量降低,在水中懸浮固體降低的情況下,水中重金屬濃度相較於基期最高濃度高出2.15倍,底泥層約減少0.8倍的重金屬濃度。氣候變遷對於二仁溪河川銅濃度有顯著之影響,高流量稀釋水體的重金屬濃度,也降低水中吸附態重金屬沉積於底泥,使得中上游區域水體與底泥重金屬較低。事業放流水加嚴標準策略對於河川和底泥重金屬濃度都有明顯改善,距離出海口25公里至出海口間,水體和底泥重金屬濃度最多削減效果達66%,顯示水體重金屬濃度削減能改善底泥重金屬濃度。以上結果得知透過懸浮固體能促進水體與底泥間的重金屬傳輸,地表水的污染控制也能降低底泥表層的污染濃度。本研究藉由重金屬在水相與固相濃度之差異,對於未來探討底泥重金屬污染改善策略提供另一層面的參考依據。 | zh_TW |
dc.description.abstract | The distribution of heavy metal depends on the transport phenomenon between surface water and sediment. Due to the transfer and diffusion of pollutants within water bodies, the dissolved heavy metals are adsorbed to suspended solids in aqueous phase thus to form the sorbed heavy metals which might deposit in the sediment subsequently. Resuspension of heavy metals from sediment might easily cause secondary pollution of rivers. Therefore, this study combines the soil hydrological assessment model and water quality model to estimate the distribution of heavy metals in the investigated river system. The Soil and Water Assessment Tool (SWAT) was employed to estimate the soil flux using climatic and topographical data, soil properties, soil utilization categories and vegetation types. The SWAT-CUP was used to calibrate all the required parameters. Furthermore, the copper is selected to be the indicator of concern to represent the heavy metal distribution using Water Quality Analysis Simulation Program Model (WASP). By considering the government heavy metal emission control measures and the factories’ locations, the heavy metal yields and their distribution within aqueous and sediment phases were calculated. Different scenarios were designed, including suspended solids yield in the dry period, more-stringent heavy metal discharge control measures and climate change impacts. These scenarios were used to estimate the heavy metals distribution in this watershed.
The water quality simulation result demonstrated that the dissolved copper in the water phase is adsorbed to suspended solids easily, resulting in the high concentration of sobbed copper in in water phase. The adsorbed form of the heavy metal is the main type of heavy metals present in water and sediment phases; moreover, the high concentration of adsorbed heavy metals in water phase might result in high heavy metal concentration in sediment phase. In dry period, less sediment and suspended solids yielded in Erren River watershed because of the less rainfall. Therefore, the heavy metal concentration in water phase increased by 215% compared with baseline concentration; however, there is a 20% decrease in heavy metal concentration in the sediment phase in comparison with baseline concentration. Heavy metal concentration in aqueous phase is diluted by high flow and high flow also reduces the adsorption of heavy metals from water to sediment, which causes the concentration of Cu lower than the baseline in upper and middle part of Erren River. More-stringent heavy metal discharge control measures may significantly improve the quality of aqueous and sediment phases. In the mid-downstream river section, the concentration of heavy metals in water body and sediment decreased by 66%. Based on the results from the present study, suspended solids can be the key role of heavy metals transportation between water and sediment phases. The heavy metal pollution in sediment phase might be alleviated by reducing the heavy metal concentration in the surface water phase. In this study, the transportation of heavy metals in water and sediment should provide a reference for the heavy metal pollution management and water quality assurance standard achievement in the future watershed management strategy. | en |
dc.description.provenance | Made available in DSpace on 2021-06-17T04:33:57Z (GMT). No. of bitstreams: 1 ntu-107-R05622020-1.pdf: 4372121 bytes, checksum: ccbd3e8fe156f1e86c7da4aa1cbe4b01 (MD5) Previous issue date: 2018 | en |
dc.description.tableofcontents | 誌謝 i
中文摘要 ii ABSTRACT iii 目 錄 v 圖目錄 viii 表目錄 x Chapter 1 緒論 1 1.1 研究動機 1 1.2 研究目的 2 Chapter 2 文獻回顧 3 2.1 污染物傳輸模式 3 2.1.1 重金屬污染傳輸與懸浮固體關係 3 2.1.2 非點源污染傳輸模式之應用 4 2.1.3 非點源污染傳輸模式之選擇 6 2.1.4 WASP水質模式之應用 7 2.1.5 HEC-RAS水理模式之應用 9 2.2 河川重金屬整治策略 11 2.2.1 水體重金屬管制標準 11 2.2.2 底泥重金屬管制標準 12 2.2.3 水體污染總量管制 13 2.3 水理水質水文模式 15 2.3.1 水理參數計算與感潮修正 15 2.3.2 WASP水質模式介紹 17 2.3.3 SWAT模式介紹 19 2.3.4 SWAT土壤沖蝕與輸砂計算 20 2.4 研究背景資料 22 2.4.1 二仁溪流域介紹 22 2.4.2 二仁溪污染整治歷程 24 2.4.3 二仁溪污染基期分析 26 2.4.4 二仁溪重金屬監測 30 Chapter 3 研究方法 31 3.1 研究流程與架構 31 3.2 SWAT水文模式建置 32 3.2.1 二仁溪流域資料建模 32 3.2.2 SWAT-CUP水文模式率定與驗證 38 3.3 污染排放推估 40 3.3.1 各子流域重金屬產量推估 40 3.3.2 各子流域泥沙產量推估 42 3.4 WASP 水質模式建置 43 3.4.1 水質模式河段劃分 43 3.4.2 懸浮固體傳輸計算 45 3.5 重金屬污染整治方案與情境 46 3.5.1 水體污染總量管制 46 3.5.2 氣候變遷下的水質變化趨勢 47 3.5.3 枯水時期的水質 49 Chapter 4 結果與討論 51 4.1 二仁溪非點源污染模擬成果 51 4.1.1 SWAT模式模擬成果 51 4.1.2 各子流域出流口流量分析 52 4.1.3 各子流域單位面積泥沙產量分析 54 4.2 WASP模式重金屬模擬成果 56 4.2.1 二仁溪水質模式校驗證 56 4.2.2 三爺溪水質模式校驗證 57 4.2.3 水體與底泥重金屬流布分析 58 4.3 整治策略和情境之水質模擬成果 63 4.3.1 枯水時期對重金屬分布的模擬成果 63 4.3.2 氣候變遷對重金屬分布的模擬成果 66 4.3.3 放流水加嚴標準對重金屬分布的模擬成果 69 Chapter 5 結論與建議 72 5.1 結論 72 5.2 建議 74 參考文獻 75 附錄一 86 一、底泥採樣與重金屬濃度分析 86 1. 採樣點選定 86 2. 底泥採樣方法及重金屬分析 87 二、 二仁溪流域底泥之重金屬銅含量分佈 88 1. 底泥銅濃度分佈 88 2. 二仁溪底泥重金屬污染評估 90 附錄二 92 | |
dc.language.iso | zh-TW | |
dc.title | 河川中懸浮固體的流布對水體與底泥中重金屬銅傳輸的影響 | zh_TW |
dc.title | Influence of Suspended Solids on the Distribution of Copper Metals in Riverine Environment | en |
dc.type | Thesis | |
dc.date.schoolyear | 106-2 | |
dc.description.degree | 碩士 | |
dc.contributor.oralexamcommittee | 方孟德(Meng-Der Fang),任秀慧(Rita Sau-Wai Yam),胡明哲(Ming-Che Hu) | |
dc.subject.keyword | SWAT模式,懸浮固體,WASP模式,底泥重金屬,重金屬移動途徑, | zh_TW |
dc.subject.keyword | SWAT model,suspended solid,WASP model,heavy metals in river sediments,heavy metal transportation, | en |
dc.relation.page | 97 | |
dc.identifier.doi | 10.6342/NTU201802817 | |
dc.rights.note | 有償授權 | |
dc.date.accepted | 2018-08-10 | |
dc.contributor.author-college | 生物資源暨農學院 | zh_TW |
dc.contributor.author-dept | 生物環境系統工程學研究所 | zh_TW |
顯示於系所單位: | 生物環境系統工程學系 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-107-1.pdf 目前未授權公開取用 | 4.27 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。