Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生物資源暨農學院
  3. 生物機電工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/70653
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor陳林祈
dc.contributor.authorJou-Hsuan Chuen
dc.contributor.author朱柔宣zh_TW
dc.date.accessioned2021-06-17T04:33:52Z-
dc.date.available2020-08-13
dc.date.copyright2018-08-13
dc.date.issued2018
dc.date.submitted2018-08-10
dc.identifier.citationAydemir, N., Malmstrom, J., & Travas-Sejdic, J. (2016). Conducting polymer based electrochemical biosensors. Phys Chem Chem Phys, 18(12), 8264-8277. doi:10.1039/c5cp06830d
Chang, H.-H., Chang, C.-K., Tsai, Y.-C., & Liao, C.-S. (2012). Electrochemically synthesized graphene/polypyrrole composites and their use in supercapacitor. Carbon, 50(6), 2331-2336. doi:https://doi.org/10.1016/j.carbon.2012.01.056
Chen, T.-A., Wu, X., & Rieke, R. D. (1995). Regiocontrolled Synthesis of Poly(3-alkylthiophenes) Mediated by Rieke Zinc: Their Characterization and Solid-State Properties. Journal of the American Chemical Society, 117(1), 233-244. doi:10.1021/ja00106a027
Chitte, H. K., Shinde, G. N., Bhat, N. V., & Walunj, V. E. (2011). Synthesis of Polypyrrole Using Ferric Chloride (FeCl<sub>3</sub>) as Oxidant Together with Some Dopants for Use in Gas Sensors. Journal of Sensor Technology, 01(02), 47-56. doi:10.4236/jst.2011.12007
Chougule, M. A., Pawar, S. G., Godse, P. R., Mulik, R. N., Sen, S., & Patil, V. B. (2011). Synthesis and Characterization of Polypyrrole (PPy) Thin Films. Soft Nanoscience Letters, 01(01), 6-10. doi:10.4236/snl.2011.11002
Davoodi, A., Honarbakhsh, S., & Farzi, G. A. (2015). Evaluation of corrosion resistance of polypyrrole/functionalized multi-walled carbon nanotubes composite coatings on 60Cu–40Zn brass alloy. Progress in Organic Coatings, 88, 106-115. doi:10.1016/j.porgcoat.2015.06.018
Diaz, A. F., Crowley, J., Bargon, J., Gardini, G. P., & Torrance, J. B. (1981). Electrooxidation of aromatic oligomers and conducting polymers. Journal of Electroanalytical Chemistry and Interfacial Electrochemistry, 121, 355-361. doi:10.1016/s0022-0728(81)80592-x
Diaz, A. F., Kanazawa, K. K., & Gardini, G. P. (1979). Electrochemical polymerization of pyrrole. Journal of the Chemical Society, Chemical Communications(14). doi:10.1039/c39790000635
Diaz, A. F., & Logan, J. A. (1980). Electroactive polyaniline films. Journal of Electroanalytical Chemistry and Interfacial Electrochemistry, 111(1), 111-114. doi:10.1016/s0022-0728(80)80081-7
Dubitsky, Y. A., Becturov, E. A., & Zhubanov, B. A. (1993). Polypyrrole-poly(carboxylic acid) conducting composites. Materials Chemistry and Physics, 34(3), 306-309. doi:https://doi.org/10.1016/0254-0584(93)90052-N
Homma, T., Kondo, M., Kuwahara, T., & Shimomura, M. (2012). Electrochemical polymerization of aniline in the presence of poly(acrylic acid) and characterization of the resulting films. Polymer, 53(1), 223-228. doi:10.1016/j.polymer.2011.11.038
Homma, T., Kondo, M., Kuwahara, T., & Shimomura, M. (2015). Polyaniline/poly(acrylic acid) composite film: A promising material for enzyme-aided electrochemical sensors. European Polymer Journal, 62, 139-144. doi:10.1016/j.eurpolymj.2014.11.017
Kalaji, M., Nyholm, L., & Peter, L. M. (1991). A microelectrode study of the influence of pH and solution composition on the electrochemical behaviour of polyaniline films. Journal of Electroanalytical Chemistry and Interfacial Electrochemistry, 313(1-2), 271-289. doi:10.1016/0022-0728(91)85185-r
Koul, S., Chandra, R., & Dhawan, S. K. (2001). Conducting polyaniline composite: a reusable sensor material for aqueous ammonia. Sensors and Actuators B: Chemical, 75(3), 151-159. doi:10.1016/s0925-4005(00)00685-7
Kuo, C. W., Chen, B. K., Tseng, Y. H., Hsieh, T. H., Ho, K. S., Wu, T. Y., & Chen, H. R. (2012). A comparative study of poly(acrylic acid) and poly(styrenesulfonic acid) doped into polyaniline as platinum catalyst support for methanol electro-oxidation. Journal of the Taiwan Institute of Chemical Engineers, 43(5), 798-805. doi:10.1016/j.jtice.2012.03.008
Lu, X., Tan, C. Y., Xu, J., & He, C. (2003). Thermal degradation of electrical conductivity of polyacrylic acid doped polyaniline: effect of molecular weight of the dopants. Synthetic Metals, 138(3), 429-440. doi:10.1016/s0379-6779(02)00471-x
Lu, Y., Li, T., Zhao, X., Li, M., Cao, Y., Yang, H., & Duan, Y. Y. (2010). Electrodeposited polypyrrole/carbon nanotubes composite films electrodes for neural interfaces. Biomaterials, 31(19), 5169-5181. doi:10.1016/j.biomaterials.2010.03.022
Ma, C. Y., Huang, S. C., Chou, P. H., Den, W., & Hou, C. H. (2016). Application of a multiwalled carbon nanotube-chitosan composite as an electrode in the electrosorption process for water purification. Chemosphere, 146, 113-120. doi:10.1016/j.chemosphere.2015.12.012
Malhotra, B., Dhand, C., Lakshminarayanan, R., Dwivedi, N., Mishra, S., Solanki, P., Ramakrishna, S. (2015). Polyaniline-based biosensors. Nanobiosensors in Disease Diagnosis. doi:10.2147/ndd.S64841
Matsutsu, M., Petersen, M. A., & van Steen, E. (2016). Pt38 cluster on OH- and COOH-functionalised graphene as a model for Pt/C-catalysts. Phys Chem Chem Phys, 18(36), 25693-25704. doi:10.1039/c6cp04111f
Mehrotra, P. (2016). Biosensors and their applications – A review. Journal of Oral Biology and Craniofacial Research, 6(2), 153-159. doi:10.1016/j.jobcr.2015.12.002
Michaelis, L., Menten, M. L., Johnson, K. A., & Goody, R. S. (2011). The original Michaelis constant: translation of the 1913 Michaelis-Menten paper. Biochemistry, 50(39), 8264-8269. doi:10.1021/bi201284u
Oueiny, C., Berlioz, S., & Perrin, F.-X. (2014). Carbon nanotube–polyaniline composites. Progress in Polymer Science, 39(4), 707-748. doi:10.1016/j.progpolymsci.2013.08.009
Patil, D. S., Pawar, S. A., Devan, R. S., Gang, M. G., Ma, Y.-R., Kim, J. H., & Patil, P. S. (2013). Electrochemical supercapacitor electrode material based on polyacrylic acid/polypyrrole/silver composite. Electrochimica Acta, 105, 569-577. doi:10.1016/j.electacta.2013.05.022
Roy, S., David-Pur, M., & Hanein, Y. (2017). Carbon Nanotube-Based Ion Selective Sensors for Wearable Applications. ACS Appl Mater Interfaces, 9(40), 35169-35177. doi:10.1021/acsami.7b07346
Simotwo, S. K., DelRe, C., & Kalra, V. (2016). Supercapacitor Electrodes Based on High-Purity Electrospun Polyaniline and Polyaniline-Carbon Nanotube Nanofibers. ACS Appl Mater Interfaces, 8(33), 21261-21269. doi:10.1021/acsami.6b03463
Steel, A. B., Herne, T. M., & Tarlov, M. J. (1998). Electrochemical Quantitation of DNA Immobilized on Gold. Analytical Chemistry, 70(22), 4670-4677. doi:10.1021/ac980037q
Tai, Z., Yan, X., & Xue, Q. (2012). Three-Dimensional Graphene/Polyaniline Composite Hydrogel as Supercapacitor Electrode. Journal of the Electrochemical Society, 159(10), A1702-A1709. doi:10.1149/2.058210jes
Vork, F. T. A., & Janssen, L. J. J. (1988). Structural effects in polypyrrole synthesis. Electrochimica Acta, 33(11), 1513-1517. doi:10.1016/0013-4686(88)80221-4
Wang, J. (2006). Analytical electrochemistry: John Wiley & Sons.
Wang, J.-Y., Chou, T.-C., Chen, L.-C., & Ho, K.-C. (2015). Using poly(3-aminophenylboronic acid) thin film with binding-induced ion flux blocking for amperometric detection of hemoglobin A1c. Biosensors and Bioelectronics, 63(Supplement C), 317-324. doi:https://doi.org/10.1016/j.bios.2014.07.058
Wang, W., Lu, L., Chen, T., & Rao, M. (2012). Fabrication and characterization of multilayer SiO2/polymethacrylic acid/polypyrrole composites and hollow polypyrrole microspheres. Journal of Applied Polymer Science, 126(3), 974-979. doi:10.1002/app.36642
Wang, Z., Carlsson, D. O., Tammela, P., Hua, K., Zhang, P., Nyholm, L., & Stromme, M. (2015). Surface Modified Nanocellulose Fibers Yield Conducting Polymer-Based Flexible Supercapacitors with Enhanced Capacitances. ACS Nano, 9(7), 7563-7571. doi:10.1021/acsnano.5b02846
Yamaura, M., Hagiwara, T., & Iwata, K. (1988). Enhancement of electrical conductivity of polypyrrole film by stretching: Counter ion effect. Synthetic Metals, 26(3), 209-224. doi:https://doi.org/10.1016/0379-6779(88)90238-X
Zengin, H., Zhou, W., Jin, J., Czerw, R., Smith, D. W., Echegoyen, L.,Ballato, J. (2002). Carbon Nanotube Doped Polyaniline. Advanced Materials, 14(20), 1480-1483. doi:10.1002/1521-4095(20021016)14:20<1480::AID-ADMA1480>3.0.CO;2-O
Zhu, B., Alsager, O. A., Kumar, S., Hodgkiss, J. M., & Travas-Sejdic, J. (2015). Label-free electrochemical aptasensor for femtomolar detection of 17beta-estradiol. Biosens Bioelectron, 70, 398-403. doi:10.1016/j.bios.2015.03.050
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/70653-
dc.description.abstract在生物感測器中的傳感器部分,導電高分子扮演了轉換離子與電子的重要角色。但在實際應用層面上,導電高分子與生物分子間常受限於無法有效固定,以及無法長時間應用於高pH值的環境中。為實踐導電高分子能夠同時固定生物分子以及提升電化學穩定性,將其官能基化為一重要議題。本論文將從提升共電聚合材料羧酸化程度,以及確認羧酸化導電高分子於中性環境之電化學活性。因此,我們導入兩大類的羧酸化材料(高分子酸及羧酸化奈米碳材)利用簡單溶液混合及共電聚合方法,製備出具有羧酸根的導電高分子複合材料。本篇論文探討使用兩種導電高分子polyaniline (PANI), polypyrrole (PPy)與兩大類羧酸化材料進行共電聚合,並分析其電化學特性及其表面化學特性。從FT-IR結果顯示PANI和PPy能和羧酸化材料進行共電聚合。在相同電鍍電量下PANI混摻Poly(acrylic acid)的組別中發現,加入超過25 mg/ml的PAA,會改變PANI的纖維結構,而PPy則是呈現出花椰菜般的緻密團簇結構。PANI-A 50之組別有最高的氧化還原峰電流,PPy-Gr有最好的贗電容穩定性,其贗電容衰退率只有13.59%。而在接觸角分析中可觀察出薄膜表面親疏水性與PAA混摻濃度有關,PAA濃度越高薄膜表面越親水。利用共電聚合法製備之羧酸化導電高分子其表面羧酸根數量可達1.06 ± 0.08 × 1017/cm2。適體固定化分析結果顯示羧酸化導電高分子表面可以固定3.62×1013 molecules/cm2。結果顯示,發現在不同的導電高分子中加入不同羧酸化材料會產生不一樣的羧酸化程度及電化學特徵,因此可以透過選擇不同的羧酸化導電高分子材料,以進行不同的生物與電化學相關實驗。zh_TW
dc.description.abstractIn the part of the transducer, the conducting polymer plays an important role in converting ions and electrons. However, in practical applications, biomolecules are often limited by ineffectively immobilized on the conducting polymers and cannot be used for a long time in high pH environments. In order to attain the conducting polymers capable of simultaneously immobilizing biomolecules and improving the electrochemical stability. The functionalization of conducting polymer is an important issue. This study will increase the degree of carboxylation of co-electropolymerized materials and confirm the electroactivity of carboxylated conducting polymers in a neutral environment. Therefore, we use two categories of carboxylated materials (high molecular weight and carboxylated carbon nanomaterials). And using simple solution mixing and co-electropolymerization methods to prepare carboxylated conducting polymer composites. From FT-IR results, PANI and PPy were successfully co-electropolymerized with carboxylated materials. In the group of PANI, it was found that the adding more than 25 mg/ml of PAA will change the fiber structure of PANI. And the PPy composites showed a dense cauliflower-like cluster structure. The PANI-A 50 group has the highest redox peak current, PPy-Gr has the best pseudo capacitance stability, and its pseudo capacitance decrease rate is only 13.59%. It can be observed that the hydrophobicity of the film surface is related to the concentration of PAA mixed. When the higher the PAA concentration was added into conducting polymers, the surface of the film will more hydrophilic. The amount of carboxyl group on the surface of carboxylated conducting polymers prepared by co-electropolymerization can reach 1.06 ± 0.08 × 1017/cm2. Aptamer immobilization analysis results showed that the carboxylated conducting polymers surface can be fixed 3.62×1013 molecules/cm2. The results show that the addition of different carboxylated materials to different conducting polymers will achieve in different degrees of carboxylation and electrochemical characteristics. Therefore, different carboxylated conducting polymer materials can be selected to perform different biological and electrochemical processes.en
dc.description.provenanceMade available in DSpace on 2021-06-17T04:33:52Z (GMT). No. of bitstreams: 1
ntu-107-R05631019-1.pdf: 25474419 bytes, checksum: 1430d4b757a2fc67e725b40345ebbaa1 (MD5)
Previous issue date: 2018
en
dc.description.tableofcontents致謝 I
中文摘要 II
英文摘要 III
目錄 V
圖目錄 IX
表目錄 X
符號說明 XI
材料說明 XII
第一章 緒論 1
1.1 前言 1
1.2 研究動機 2
1.3 研究目的 3
1.4 研究架構 4
第二章 文獻回顧 6
2.1 生物感測器 6
2.2 導電高分子 7
2.2.1 聚苯胺 (polyaniline, PANI) 9
2.2.2 聚吡咯 (polypyrrole, PPy) 11
2.3 官能基化材料 13
2.3.1 羧酸化高分子材料 15
2.3.2 無機碳材 16
2.4 羧酸化導電高分子電極製備策略 18
2.4.1 羧酸化PANI複合材料 18
2.4.2 羧酸化PPy複合材料 19
2.5 官能基化導電高分子電極之應用 20
第三章 研究方法 21
3.1 實驗儀器與藥品 21
3.1.1 實驗儀器 21
3.1.2 實驗藥品 23
3.2 實驗方法 25
3.2.1 導電玻璃(ITO glass)基材前處理 25
3.2.2 官能基化導電高分子薄膜製備方法 25
3.2.3 適體固定化方法 27
3.3 電化學分析方法 27
3.3.1 循環伏安法分析(cyclic voltammetry, CV) 27
3.3.2 電化學阻抗頻譜分析(electrochemical impedance spectroscopy, EIS ) 27
3.3.3 微分脈衝伏安法(differential pulse spectroscopy, DPV) 28
3.3.4 計時庫倫法(chronocoulometry, CC) 28
3.4 表面特性分析 28
3.4.1 掃描式電子顯微鏡(scanning electron microscopy, SEM) 28
3.4.2 接觸角分析(contact angle, CA) 29
3.4.3 傅立葉轉換紅外線光譜儀(FT-IR) 29
3.4.4 X射線光電子能譜儀分析(x-ray photoelectron spectroscopy, XPS) 30
3.4.5 Toluidine blue O定量電極表面羧酸基(TBO assay) 30
第四章 結果與討論 31
4.1 共電聚合羧酸化導電高分子之光譜鑑定 31
4.1.1 羧酸化PANI之光譜鑑定 31
4.1.2 羧酸化PPy之光譜鑑定 37
4.2 羧酸化導電高分子電極微結構觀察(SEM表面及剖面結構觀察) 43
4.2.1 羧酸化PANI薄膜微結構觀察 43
4.2.2 羧酸化PPy薄膜微結構觀察 54
4.3 羧酸化薄膜於中性環境電化學活性比較 66
4.3.1 羧酸化PANI薄膜電極電化學分析 66
4.3.2 羧酸化PPy薄膜電極電化學分析 75
4.4 羧酸化導電高分子電極表面化學分析(XPS及羧酸根定量) 81
4.4.1 羧酸化PANI薄膜特性分析 81
4.4.2 羧酸化PPy薄膜特性分析 89
4.5 應用於適體感測器開發初步測試 97
4.5.1 表面適體固定量分析 97
4.5.2 電化學阻抗頻譜分析 98
4.5.3 微分脈衝伏安法分析 100
第五章 結論與建議 101
5.1 結論 101
5.2 建議 103
第六章 參考文獻 104
附錄 108
dc.language.isozh-TW
dc.subject聚丙烯酸zh_TW
dc.subject中性環境電化學活性zh_TW
dc.subject奈米碳材zh_TW
dc.subject羧酸化zh_TW
dc.subject導電高分子zh_TW
dc.subjectcarboxylationen
dc.subjectnanocarbon materialsen
dc.subjectpoly(acrylic acid)en
dc.subjectelectroactivity in neutral environmenten
dc.subjectconducting polymeren
dc.title共電聚合羧酸化導電高分子電極之電化學與表面化學特性研究zh_TW
dc.titleA study on the electrochemical and surface characterization of carboxylated conducting polymer electrodes prepared by co-electropolymerizationen
dc.typeThesis
dc.date.schoolyear106-2
dc.description.degree碩士
dc.contributor.oralexamcommittee吳靖宙,莊旻傑,陳世芳
dc.subject.keyword羧酸化,導電高分子,中性環境電化學活性,聚丙烯酸,奈米碳材,zh_TW
dc.subject.keywordcarboxylation,conducting polymer,electroactivity in neutral environment,poly(acrylic acid),nanocarbon materials,en
dc.relation.page118
dc.identifier.doi10.6342/NTU201802398
dc.rights.note有償授權
dc.date.accepted2018-08-10
dc.contributor.author-college生物資源暨農學院zh_TW
dc.contributor.author-dept生物產業機電工程學研究所zh_TW
顯示於系所單位:生物機電工程學系

文件中的檔案:
檔案 大小格式 
ntu-107-1.pdf
  未授權公開取用
24.88 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved