Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 管理學院
  3. 資訊管理學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/7064
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor蔡益坤(Yih-Kuen Tsay)
dc.contributor.authorYi-Hsiang Wangen
dc.contributor.author王奕翔zh_TW
dc.date.accessioned2021-05-17T10:18:08Z-
dc.date.available2012-01-17
dc.date.available2021-05-17T10:18:08Z-
dc.date.copyright2012-01-17
dc.date.issued2011
dc.date.submitted2011-11-07
dc.identifier.citation[1] AV-TEST Statistics. http://www.av-test.org/en/statistics/malware/.
[2] Babic's website. http://www.domagoj-babic.com/index.php/ResearchProjects/MalwareAnalysis.
[3] libSFTA. http://www. t.vutbr.cz/research/groups/veri t/tools/libSFTA/.
[4] Dana Angluin. Learning regular sets from queries and counterexamples. Inf. Com-
put., 75(2):87-106, 1987.
[5] Dana Angluin. Queries and concept learning. Machine Learning, 2(4):319-342, 1987.
[6] Domagoj Babic, Daniel Reynaud, and Dawn Song. Malware analysis with tree
automata inference. In CAV, pages 116{131, 2011.
[7] J er^ome Besombes and Jean-Yves Marion. Learning tree languages from positive
examples and membership queries. Theor. Comput. Sci., 382(3):183{197, 2007.
[8] Guillaume Bonfante, Matthieu Kaczmarek, and Jean-Yves Marion. Architecture of a
morphological malware detector. Journal in Computer Virology, 5(3):263-270, 2009.
[9] John M. Brayer and King-Sun Fu. A note on the k-tail method of tree grammar
inference. Systems, Man and Cybernetics, IEEE Transactions on, 7(4):293-300,
april 1977.
[10] Yu-Fang Chen, Azadeh Farzan, Edmund M. Clarke, Yih-Kuen Tsay, and Bow-
Yaw Wang. Learning Minimal Separating DFA's for Compositional Veri cation.
In TACAS, pages 31{45, 2009.
[11] Mihai Christodorescu and Somesh Jha. Testing malware detectors. In ISSTA, pages
34-44, 2004.
[12] Colin de la Higuera. A bibliographical study of grammatical inference. Pattern
Recognition, 38(9):1332-1348, 2005.
[13] Colin de la Higuera. Grammatical Inference: Learning Automata and Grammars.
Cambridge University Press, New York, NY, USA, 2010.
[14] Frank Drewes. MAT learners for recognizable tree languages and tree series. Acta
Cybern., 19(2):249-274, 2009.
[15] Matt Fredrikson, Somesh Jha, Mihai Christodorescu, Reiner Sailer, and Xifeng Yan.
Synthesizing near-optimal malware speci cations from suspicious behaviors. In IEEE
Symposium on Security and Privacy, pages 45-60, 2010.
[16] H. Fukuda and K. Kamata. Inference of tree automata from sample set of trees. Inter-
national Journal of Parallel Programming, 13:177-196, 1984. 10.1007/BF00979871.
[17] Pedro Garc a and Jose Oncina. Inference of Recognizable Tree Sets. Technical Report
DSIC-II/47/93, Universidad de Alicante, 1993.
[18] Clemens Kolbitsch, Paolo Milani Comparetti, Christopher Kruegel, Engin Kirda,
Xiaoyong Zhou, and XiaoFeng Wang. E ective and e cient malware detection at
the end host. In Proceedings of the 18th conference on USENIX security symposium,
SSYM'09, pages 351-366, 2009.
[19] Lorenzo Martignoni, Elizabeth Stinson, and John C. Mitchell. A layered architecture
for detecting malicious behaviors. In Symposium on Recent Advances in Intrusion
Detection (RAID), pages 78-97, 2008.
[20] Yasubumi Sakakibara. Recent advances of grammatical inference. Theor. Comput.
Sci., 185(1):15-45, 1997.
[21] Symantec. Symantec Internet Security Threat Report, Trends for 2010.
http://www.symantec.com/business/threatreport/, 2010.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/7064-
dc.description.abstract網路上存在許多不同的資安威脅,其中最惡名昭彰的就是惡意程式。惡意程式指的是那些帶有惡意企圖並且有惡意行為的程式。典型的惡意程式包含了病毒、蠕蟲、木馬與間諜軟體。惡意程式偵測軟體可降低我們被惡意程式攻擊的風險。不同的偵測軟體有其各別的偵測方法,但在現今的偵測軟體中最基本也最普遍被應用的方法是靜態特徵碼比對。然而這種偵測方法已經普遍的被認為無法對抗現今更為進階的惡意程式。進階的惡意程式使用程式混淆的手法改變程式本身的結構,也因此能夠非常輕易的避過偵查軟體。幸運的是,程式本身的語意在經過混淆後通常仍會保持一致,因此一個可行的對策就是設計一個以程式語意為基礎的偵測方法。
在這篇論文裡,我們提出一個以程式語意為基礎的惡意程式偵測方法。觀察近年來被提出的各種辦法,我們發覺字串仍然被廣泛的使用為一種特徵碼的形式。我們可以將字串擴充為樹,樹不但更為一般化而且帶有更多的語意資訊。因此,我們使用樹做為我們偵測軟體的特徵碼形式。我們的偵測軟體需要一組惡意程式跟一組正常程式做為輸入。這些程式的語意會以系統呼叫的資料相依圖表示。接著,我們將這些相依圖解析為樹。使用文法推論的方法,我們最後可以得到一個三值的樹狀自動機。一個三值的樹狀自動機有三個互斥的最終狀態:接受、拒絕、與未知。如果我們使用三值樹狀自動機做為我們的惡意程式偵測軟體,根據輸入的程式他會有三種可能的輸出值。如果輸入的程式是一個惡意程式,偵測軟體會輸出是。如果輸入的程式是一個正常程式,偵測軟體會輸出否。其餘的狀況下他會輸出未知。根據我們的實驗結果,我們的偵測軟體有著相當低的誤報。然而,相對的代價是許多程式經過軟體檢查後的結果是未知。
zh_TW
dc.description.abstractThere exist many security threats on the Internet, and the most notorious is malware.
Malware (malicious software) refers to programs that have malicious intention and per-
form some harmful actions. Typical malware includes viruses, worms, trojan horses, and
spyware. The rst line of defense to deter malware is malware detector. Each malware
detector has its own analysis method. The most basic and prevalent methods used in
commercial malware detectors are based on syntactic signature matching. It is widely
recognized that this detection mechanism cannot cope with advanced malware. Advanced
malware uses program obfuscation to alter program structures and therefore can evade
the detection easily. However, the semantics of a malware instance is usually preserved
after obfuscation. So, it is feasible to develop a malware detector that is based on pro-
gram semantics.
In this thesis, we propose a semantics-based approach to malware analysis. Observing
recently proposed methods for malware detection, we notice that string-based signatures
are still used widely. It is natural to extend from string to tree, which is more general and
can carry more semantics. Therefore, we use trees as signatures. Our malware detector
requires a set of malware instances and a set of benign programs. The semantics of each
input program is extracted and represented as a system call dependence graph. The
graph is then transformed into a tree. With the set of trees generated from malware and
benign programs, we use the method of grammatical inference to learn a 3-valued deter-
ministic nite tree automaton (3DFT). A 3DFT has three di erent nal states: accept,
reject, and unknown. If we take this 3DFT as the malware detector, it outputs three
di erent values. If an input program is a malware instance, the detector outputs true. If
an input program is a benign program, the detector outputs false. Otherwise, it outputs
unknown. According to our experiments, our detector exhibits very low false positives.
However, there is a tradeo that many programs are identi ed as unknown.
en
dc.description.provenanceMade available in DSpace on 2021-05-17T10:18:08Z (GMT). No. of bitstreams: 1
ntu-100-R98725035-1.pdf: 1598430 bytes, checksum: 192e75a6def3d9b0ca7eed7982b25fca (MD5)
Previous issue date: 2011
en
dc.description.tableofcontents1 Introduction 1
1.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Motivation and Objective . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.3 Thesis Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2 Related Work 6
2.1 Grammatical Inference . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.1.1 Tree Automata Inference . . . . . . . . . . . . . . . . . . . . . . . 7
2.2 Malware Analysis with Executed System Calls . . . . . . . . . . . . . . . 10
2.2.1 Eective and Ecient Malware Detection at the End Host . . . . 10
2.2.2 A Layered Architecture for Detecting Malicious Behaviors . . . . 12
2.3 Malware Analysis with Tree Automata . . . . . . . . . . . . . . . . . . . 15
2.3.1 Architecture of a Morphological Malware Detector . . . . . . . . . 15
2.3.2 Malware Analysis with Tree Automata Inference . . . . . . . . . . 17
3 Preliminaries 19
3.1 Finite Ordered Trees . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
3.2 Finite Tree Automata . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
4 Approach 22
4.1 Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
4.2 3-Valued Deterministic Finite Tree Automata . . . . . . . . . . . . . . . 24
4.3 Semantics Extraction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
4.4 Graph Parser . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
4.5 Automata Learning Algorithm . . . . . . . . . . . . . . . . . . . . . . . . 28
4.5.1 Learning Algorithm of Drewes . . . . . . . . . . . . . . . . . . . . 28
4.5.2 Tree Automata Learning Algorithm . . . . . . . . . . . . . . . . . 31
5 Implementation and Experiments 33
5.1 Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
5.2 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
5.2.1 Experimental Results . . . . . . . . . . . . . . . . . . . . . . . . . 37
6 Conclusion 44
6.1 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
6.2 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
Bibliography 47
dc.language.isozh-TW
dc.subject系統呼叫zh_TW
dc.subject惡意程式分析zh_TW
dc.subject惡意程式偵測軟體zh_TW
dc.subject文法推論zh_TW
dc.subject三值自動機zh_TW
dc.subject程式語意zh_TW
dc.subjectSystem Callen
dc.subjectMalware Analysisen
dc.subjectMalware Detectoren
dc.subjectGrammatical Inferenceen
dc.subject3-Valued Automataen
dc.subjectProgram Semanticsen
dc.title以三值樹狀自動機為基礎之惡意程式分析zh_TW
dc.titleMalware Analysis with 3-Valued Deterministic Finite Tree Automataen
dc.typeThesis
dc.date.schoolyear100-1
dc.description.degree碩士
dc.contributor.oralexamcommittee王柏堯(Bow-Yaw Wang),陳郁方(Yu-Fang Chen)
dc.subject.keyword惡意程式分析,惡意程式偵測軟體,文法推論,三值自動機,程式語意,系統呼叫,zh_TW
dc.subject.keywordMalware Analysis,Malware Detector,Grammatical Inference,3-Valued Automata,Program Semantics,System Call,en
dc.relation.page48
dc.rights.note同意授權(全球公開)
dc.date.accepted2011-11-07
dc.contributor.author-college管理學院zh_TW
dc.contributor.author-dept資訊管理學研究所zh_TW
顯示於系所單位:資訊管理學系

文件中的檔案:
檔案 大小格式 
ntu-100-1.pdf1.56 MBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved