請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/7063完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 程蘊菁(Yen-Ching Chen) | |
| dc.contributor.author | Chine-Lin Mao | en |
| dc.contributor.author | 毛健麟 | zh_TW |
| dc.date.accessioned | 2021-05-17T10:18:08Z | - |
| dc.date.available | 2015-03-02 | |
| dc.date.available | 2021-05-17T10:18:08Z | - |
| dc.date.copyright | 2012-03-02 | |
| dc.date.issued | 2011 | |
| dc.date.submitted | 2011-11-09 | |
| dc.identifier.citation | 1. Sanchez-Riera L, Wilson N, Kamalaraj N, Nolla JM, Kok C, et al. (2010) Osteoporosis and fragility fractures. Best Pract Res Clin Rheumatol 24: 793–810. doi:10.1016/j.berh.2010.10.003
2. Vestergaard P, Rejnmark L, Mosekilde L (2007) Increased mortality in patients with a hip fracture-effect of pre-morbid conditions and post-fracture complications. Osteoporos Int 18: 1583–1593. doi:10.1007/s00198-007-0403-3 3. Kanis JA, Johnell O, Oden A, Jonsson B, De Laet C, et al. (2000) Risk of hip fracture according to the World Health Organization criteria for osteopenia and osteoporosis. Bone 27: 585–590. 4. Dawson-Hughes B, Looker AC, Tosteson ANA, Johansson H, Kanis JA, et al. (2011) The potential impact of the National Osteoporosis Foundation guidance on treatment eligibility in the USA: an update in NHANES 2005-2008. Osteoporos Int. doi:10.1007/s00198-011-1694-y 5. Barrett-Connor E, Siris ES, Wehren LE, Miller PD, Abbott TA, et al. (2005) Osteoporosis and fracture risk in women of different ethnic groups. J Bone Miner Res 20: 185–194. doi:10.1359/JBMR.041007 6. Yang T-S, Chen Y-R, Chen Y-J, Chang C-Y, Ng H-T (2004) Osteoporosis: prevalence in Taiwanese women. Osteoporos Int 15: 345–347. doi:10.1007/s00198-003-1509-x 7. Denhardt D, Noda M (1998) Osteopontin expression and function: Role in bone remodeling. J Cell Biochem: 92–+. 8. Choi ST, Kim JH, Kang E-J, Lee S-W, Park M-C, et al. (2008) Osteopontin might be involved in bone remodelling rather than in inflammation in ankylosing spondylitis. Rheumatology (Oxford) 47: 1775–1779. doi:10.1093/rheumatology/ken385 9. Rittling SR, Matsumoto HN, Mckee MD, Nanci A, An X-R, et al. (1998) Mice Lacking Osteopontin Show Normal Development and Bone Structure but Display Altered Osteoclast Formation In Vitro. J Bone Miner Res 13: 1101–1111. doi:10.1359/jbmr.1998.13.7.1101 10. Moore M, Gotoh Y, Rafidi K (1991) Characterization of a cDNA for chicken osteopontin: expression during bone development, osteoblast differentiation, and tissue distribution - Biochemistry (ACS Publications). Biochemistry. 11. Zohar R, Cheifetz S, McCulloch C (1998) Analysis of intracellular osteopontin as a ma... [Eur J Oral Sci. 1998] - PubMed - NCBI. European Journal of Oral Sciences. 1998 Jan;106 Suppl 1:401-7. 12. Feng Y, Hsu Y, Terwedow H, Chen C, Xu X, et al. (2005) Familial aggregation of bone mineral density and bone mineral content in a Chinese population. Osteoporos Int 16: 1917–1923. doi:10.1007/s00198-005-1962-9 13. Taylor BC, Schreiner PJ, Doherty TM, Fornage M, Carr JJ, et al. (2005) Matrix Gla protein and osteopontin genetic associations with coronary artery calcification and bone density: the CARDIA study. Hum Genet 116: 525–528. doi:10.1007/s00439-005-1258-3 14. Chang IC, Chiang TI, Yeh KT, Lee H, Cheng YW (2010) Increased serum osteopontin is a risk factor for osteoporosis in menopausal women. Osteoporos Int 21: 1401–1409. doi:10.1007/s00198-009-1107-7 15. Richards J, Kavvoura F (2009) Collaborative meta-analysis: associations of 150 candidate genes with osteoporosis and osteoporotic fracture. Annals of internal …. 16. Gabriel SB (2002) The Structure of Haplotype Blocks in the Human Genome. Science 296: 2225–2229. doi:10.1126/science.1069424 17. Chen Y-C, Giovannucci E, Lazarus R, Kraft P, Ketkar S, et al. (2005) Sequence variants of Toll-like receptor 4 and susceptibility to prostate cancer. Cancer Res. 65: 11771–11778. doi:10.1158/0008-5472.CAN-05-2078 18. Stram DO, Leigh Pearce C, Bretsky P, Freedman M, Hirschhorn JN, et al. (2003) Modeling and E-M Estimation of Haplotype-Specific Relative Risks from Genotype Data for a Case-Control Study of Unrelated Individuals. Hum Hered 55: 179–190. doi:10.1159/000073202 19. Benjamini Y (1995) JSTOR: Journal of the Royal Statistical Society. Series B (Methodological), Vol. 57, No. 1 (1995), pp. 289-300. Journal of the Royal Statistical Society Series B …. 20. Gravallese EM (2003) Osteopontin: a bridge between bone and the immune system. J. Clin. Invest. 112: 147–149. doi:10.1172/JCI19190 21. Reinholt FP, Hultenby K, Oldberg A, Heinegard D (1990) Osteopontin-a possible anchor of osteoclasts to bone. Proc. Natl. Acad. Sci. U.S.A. 87: 4473–4475. 22. Denhardt DT, Guo X (1993) Osteopontin: a protein with diverse functions. FASEB J. 7: 1475–1482. 23. O'Regan A, Chupp G, Lowry J, Goetschkes M, Mulligan N, et al. (1999) Osteopontin is associated with T cells in sarcoid granulomas and has T cell adhesive and cytokine-like properties in vitro. J Immunol 162: 1024–1031. 24. Dobaczewski M, Gonzalez-Quesada C, Frangogiannis NG (2010) The extracellular matrix as a modulator of the inflammatory and reparative response following myocardial infarction. J. Mol. Cell. Cardiol. 48: 504–511. doi:10.1016/j.yjmcc.2009.07.015 25. Puxeddu I, Berkman N, Ribatti D, Bader R, Haitchi HM, et al. (2010) Osteopontin is expressed and functional in human eosinophils. Allergy 65: 168–174. doi:10.1111/j.1398-9995.2009.02148.x 26. Altıntaş A, Saruhan-Direskeneli G, Benbir G, Demir M, Purisa S (2009) The role of osteopontin: A shared pathway in the pathogenesis of multiple sclerosis and osteoporosis? Journal of the Neurological Sciences 276: 41–44. doi:10.1016/j.jns.2008.08.031 27. Chapman J, Miles PD, Ofrecio JM, Neels JG, Yu JG, et al. (2010) Osteopontin Is Required for the Early Onset of High Fat Diet-Induced Insulin Resistance in Mice. PLoS ONE 5: e13959. doi:10.1371/journal.pone.0013959.t003 28. SATOH Y, SOEDA Y, DOKOU S (1995) Analysis of Relationships Between Sex-Hormone Dynamics and Bone Metabolism and Changes in Bone Mass in Surgically Induced Menopause. Calcif Tissue Int 57: 258–266. 29. Saarelainen J, Kiviniemi V, Kroger H, Tuppurainen M, Niskanen L, et al. (2011) Body mass index and bone loss among postmenopausal women: the 10-year follow-up of the OSTPRE cohort. J Bone Miner Metab. doi:10.1007/s00774-011-0305-5 30. Felson DT, Zhang Y, Hannan MT, Anderson JJ (2009) Effects of weight and body mass index on bone mineral density in men and women: The framingham study. J Bone Miner Res 8: 567–573. doi:10.1002/jbmr.5650080507 31. Tryniszewski W, Gadzicki M, Rysz J, Banach M, Maziarz Z (2010) The behaviour of bone mineral density and bone metabolism index in young and menopausal women with the consideration of body mass index. Med. Sci. Monit. 16: CR342–7. 32. Urena P, Hruby M, Ferreira A, Ang KS, de Vernejoul MC (1996) Plasma total versus bone alkaline phosphatase as markers of bone turnover in hemodialysis patients. J. Am. Soc. Nephrol. 7: 506–512. 33. Civitelli R, Armamento-Villareal R, Napoli N (2009) Bone turnover markers: understanding their value in clinical trials and clinical practice. Osteoporos Int 20: 843–851. doi:10.1007/s00198-009-0838-9 34. Jang J, Kim J (2005) Improved cellular response of osteoblast cells using recombinant human osteopontin protein produced by Escherichia coli. Biotechnol Lett 27: 1767–1770. doi:10.1007/s10529-005-3551-6 35. Sokoll LJ, Kroll MH, Levine MA, Poordad FF, Chan DW (1997) Bone to total alkaline phosphatase ratios improve sensitivity and specificity of bone alkaline phosphatase immunoassays. Clin. Biochem. 30: 625–629. 36. Levey A, Perrone R (1988) Serum Creatinine and Renal Function - Annual Review of Medicine, 39(1):465. Annual review of medicine. 37. Baxmann AC, Ahmed MS, Marques NC, Menon VB, Pereira AB, et al. (2008) Influence of muscle mass and physical activity on serum and urinary creatinine and serum cystatin C. Clin J Am Soc Nephrol 3: 348–354. doi:10.2215/CJN.02870707 38. Feig D, Kivlighn S, Kanellis J, Watanabe S (2003) Is There a Pathogenetic Role for Uric Acid in Hypertension and Cardiovascular and Renal Disease? …. 39. Keizman D, Ish-Shalom M, Berliner S, Maimon N, Vered Y, et al. (2009) Low uric acid levels in serum of patients with ALS: further evidence for oxidative stress? Journal of the Neurological Sciences 285: 95–99. doi:10.1016/j.jns.2009.06.002 40. Almeida M, Han L, Martin-Millan M, O'Brien CA, Manolagas SC (2007) Oxidative stress antagonizes Wnt signaling in osteoblast precursors by diverting beta-catenin from T cell factor- to Forkhead box O-mediated transcription. Journal of Biological Chemistry 282: 27298–27305. doi:10.1074/jbc.M702811200 41. Dalbeth N, Smith T, Nicolson B, Clark B (2008) Enhanced osteoclastogenesis in patients with tophaceous gout: Urate crystals promote osteoclast development through interactions with stromal cells - Dalbeth - 2008 - Arthritis & Rheumatism - Wiley Online Library. Arthritis & …. 42. Parhami F (2003) Possible role of oxidized lipids in osteoporosis: could hyperlipidemia be a risk factor? Prostaglandins Leukot. Essent. Fatty Acids 68: 373–378. 43. Makovey J, Chen JS, Hayward C, Williams FMK, Sambrook PN (2009) Association between serum cholesterol and bone mineral density. Bone 44: 208–213. doi:10.1016/j.bone.2008.09.020 | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/7063 | - |
| dc.description.abstract | 背景:Secreted phosphoprotein-1 (SPP1) 骨橋蛋白基因,藉由和破骨細胞膜表面的vitronectin受體結合,參與破骨細胞接合骨質的破骨作用中。最近的統合分析發現,SPP1基因多型性與骨密度及骨折的風險有關。
方法:這是一篇橫斷式研究。 1319位健康台灣女性,年齡在40至55歲,於2009年10月至2010年8月間,從美兆健康體檢中心被招募。高與低骨密度比較,高骨密度定義為三等分的第一組,而第二組加上第三組則為低骨密度。本研究探討三種常見的(對偶基因頻率> 5%) haplotype-tagging單核苷酸多型性(htSNP)來分析SPP1基因多型性與低骨密度風險的關聯。我們還評估了更年期,年齡,身體質量指數和相關的生物標誌物如何影響SPP1多型性與低骨密度風險之間的相關 結果:研究結果顯示帶有rs4754變異的對偶基因會降低低骨密度風險[2 vs. 0 copies: adjust odds ratio(AOR)= 0.54,95%CI= 0.36 - 0.81],與非攜帶者相比,攜帶兩個變異的婦女有較高的骨密度。在單倍體分析方面,在校正偽陽性率後,攜帶HAP1 TGC兩個變異的婦女在高鹼性磷酸酶 [AOR= 0.30,95%CI= 0.15 - 0.64]和或低尿酸 [AOR= 0.33,95%CI= 0.16 - 0.68] 時有保護的效果。 SPP1基因和低骨密度風險,無論是在單核苷酸多型性或單倍體水平沒有顯著作用。在本研究中,停經與否並不會顯著的修飾SPP1基因與低骨密度的關係。 結論:在中年亞裔女性身上,SPP1基因多型性與保護骨密度低下有顯著的相關。 | zh_TW |
| dc.description.abstract | Background. Secreted phosphoprotein-1 (SPP1) is involved in the anchoring of osteoclasts to the mineral of bone matrix by binding with vitronectin receptor. A recent meta-analysis found SPP1 genetic polymorphisms were associated with bone mineral density (BMD) and fracture risk.
Methods. This is a cross-sectional study. A total of 1,319 healthy Taiwanese women aged 40 to 55 years old were recruited from MJ health screening center from October 2009 to August 2010. High versus low bone mineral density (BMD) was defined as the 1st tertile versus 2nd plus 3rd tertiles of BMD. Three common (allele frequency>5%) haplotype-tagging single nucleotide polymorphisms (htSNPs) were selected to examine the association between sequence variants of SPP1 and BMD. Results. Women carrying two copies of variant rs4754 had a significantly decreased risk of low BMD [adjusted OR (AOR) = 0.54, 95% CI = 0.36 - 0.81] as compared with non-carriers. Women carrying two copies of minor haplotype TGC had a decreased risk of low BMD among those with high alkaline phosphatase [AOR = 0.30, 95% CI = 0.15 - 0.64] or with low uric acid [AOR = 0.33, 95% CI = 0.16 - 0.68]. These associations remained significantly associated with low BMD after controlling for FDR. Menopausal status did not significant modify the association between SPP1 polymorphisms and low BMD. Conclusion . Genetic polymorphisms of SPP1 were significantly associated with decreased risk of low BMD in middle-aged Asian women. | en |
| dc.description.provenance | Made available in DSpace on 2021-05-17T10:18:08Z (GMT). No. of bitstreams: 1 ntu-100-R98846001-1.pdf: 2498240 bytes, checksum: 21a2a0f21ab395abcd932baa768e6502 (MD5) Previous issue date: 2011 | en |
| dc.description.tableofcontents | Contents
口試委員會審定書 i 致謝 ii 摘要 iii ABSTRACT v Contents 1 List of figures 3 List of tables 4 Chapter 1. INTRODUCTION 6 1.1 Osteoporosis (OP) and bone mineral density (BMD) 6 1.2 Secreted phosphoprotein-1 (SPP1) gene 7 1.3 Associations between SPP1 polymorphisms and OP or BMD 7 1.4 Aims 8 Chapter 2. MATERIALS AND METHODS 9 2.1 Study population 9 2.2 Bone mineral density measurement 9 2.3 SNP selection and genotyping assays 10 2.4 Statistical analyses 10 Chapter 3. RESULTS 13 3.1 Characteristics of the study population 13 3.2 SPP1 polymorphisms and BMD 13 3.3 SPP1 haplotypes and BMD 14 3.4 Effect modification by potential confounders 15 Chapter 4. DISCUSSIONS 17 4.1 Main findings 17 4.2 Postulated Mechanism of SPP1 and low BMD 18 4.3 Strengths and Limitations 21 Chapter 5. CONCLUSIONS 23 Reference 24 List of figures Figure 1. The flowchart of participant recruitment 29 Figure 2. Distribution of BMD 30 Figure 3. Linkage disequilibrium (LD) plot of SPP1 gene 31 Figure 4. Mean bone mineral density (BMD) ± 1 standard error (SE) in the different rs11730582 genotype groups. 32 Figure 5. Mean bone mineral density (BMD) ± 1 standard error (SE) in the different rs6839524 genotype groups. 33 Figure 6. Mean bone mineral density (BMD) ± 1 standard error (SE) in the different rs4754 genotype groups. 34 Figure 7. Postulated mechanisms of SPP1 and BMD 35 Figure 8. Forest plot of low BMD risk for different covariates 36 List of tables Table 1. Definition of low and high BMD groups 37 Table 2. Characteristics of the study population 38 Table 3. Characteristics of SPP1 haplotype-tagging SNPs 39 Table 4. SPP1 SNPs and the risk of low BMD 40 Table 5. SPP1 haplotypes and the risk of low BMD 41 Table 6. SPP1 SNPs and the risk of low BMD by menopausal status 42 Table 7. SPP1 SNPs and the risk of low BMD by BMI 43 Table 8. SPP1 SNPs and the risk of low BMD by serum ALP level (low and high) 44 Table 9. SPP1 SNPs and the risk of low BMD by serum creatinine level (low and high) 45 Table 10. SPP1 SNPs and the risk of low BMD by serum UA level (low and high) 46 Table 11. SPP1 SNPs and the risk of low BMD by serum LDL level (low and high) 47 Table 12. SPP1 haplotypes and the risk of low BMD by menopausal status 48 Table 13. SPP1 haplotypes and the risk of low BMD by BMI 49 Table 14. SPP1 haplotypes and the risk of low BMD by ALP level (low and high) 50 Table 15. SPP1 haplotypes and the risk of low BMD by creatinine level (low and high) 51 Table 16. SPP1 haplotypes and the risk of low BMD by UA level (low and high) 52 Table 17. SPP1 haplotypes and the risk of low BMD by serum LDL level (low and high) 53 Table 18. Interaction between rs4754 and serum biomarkers on low BMD risk 54 Table 19. Interaction between HAP1 and serum biomarkers on low BMD risk 55 Table 20. Previous studies on SPP1 polymorphisms and BMD 56 | |
| dc.language.iso | en | |
| dc.subject | 單倍型 | zh_TW |
| dc.subject | 單倍型 | zh_TW |
| dc.subject | 酸多型性 | zh_TW |
| dc.subject | 骨橋蛋白 | zh_TW |
| dc.subject | 骨質密度 | zh_TW |
| dc.subject | 骨質疏鬆症 | zh_TW |
| dc.subject | 單核苷 | zh_TW |
| dc.subject | haplotypes | en |
| dc.subject | SPP1 | en |
| dc.subject | osteopontin | en |
| dc.subject | osteoporosis | en |
| dc.subject | bone mineral density | en |
| dc.subject | single nucleotide polymorphism | en |
| dc.title | 台灣女性SPP1基因多型性與骨密度低下之關聯研究 | zh_TW |
| dc.title | Secreted Phosphoprotein-1 (SPP1) Polymorphisms Are Associated with a Decreased Risk of Low Bone Mineral Density in Taiwanese Women | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 100-1 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 丘政民,簡國龍,李文宗,蔡克嵩 | |
| dc.subject.keyword | 骨質疏鬆症,骨質密度,骨橋蛋白,單倍型,單核苷,酸多型性,單倍型, | zh_TW |
| dc.subject.keyword | SPP1,osteopontin,osteoporosis,bone mineral density,single nucleotide polymorphism,haplotypes, | en |
| dc.relation.page | 56 | |
| dc.rights.note | 同意授權(全球公開) | |
| dc.date.accepted | 2011-11-10 | |
| dc.contributor.author-college | 公共衛生學院 | zh_TW |
| dc.contributor.author-dept | 流行病學與預防醫學研究所 | zh_TW |
| 顯示於系所單位: | 流行病學與預防醫學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-100-1.pdf | 2.44 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
