Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 高分子科學與工程學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/70629
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor邱文英(Wen-Yen Chiu)
dc.contributor.authorNai-Yun Liangen
dc.contributor.author梁乃允zh_TW
dc.date.accessioned2021-06-17T04:33:06Z-
dc.date.issued2018
dc.date.submitted2018-08-10
dc.identifier.citation1.Bengtsson, M.; Baillif, M. L.; Oksman, K. (2007) Extrusion and mechanical properties of highly filled cellulose fibre–polypropylene blends. Composites Part A 38:1922-1931.
2.Qiu, W. L.; Endo, T.; Hirotsu, T. (2006) Structure and properties of composites of highly crystalline cellulose with polypropylene:Effects of polypropylene molecular weight. Euro. Polym. J. 42:1059-1068.
3.Kosaka, P. M.; K8awano, Y.; Salvadori, M.C.; Petri, D. F. S. (2005) Characterization of ultrathin films of cellulose esters. Cellulose 12:351-359.
4.Dai, L.; Wang, B.; Long, Z.; Chen, L.; Zhang, D.; Guo, S. (2015) Properties of hydroxypropyl guar TEMPO-oxidized cellulose nanofibrils blend films. Cellulose 22:3117-3126.
5.Liu, K.; Chen, L. H.; Huang, L. L.; Ni, Y. H.; Sun, B. (2015) Enhancing antibacterium and strength of cellulosic paper by coating triclosan-loaded nanofibrillated cellulose (NFC). Carbohydr. Polym. 117:996-1001.
6.Chen, B.; Zhong, L.; Gu, L. (2010) Thermal properties and chemical changes in blend melt spinning of cellulose acetate butyrate and a novel cationic dyeable copolyester. J. Appl. Polym. Sci. 116:2487-2495.
7.Bhatt, B.; Kumar, V. (2015) Regenerated cellulose capsules for controlled drug delivery: Part I. Physiological characteristics of membrane formation and the influence of thermal annealing. Cellulose 22:3237-3250.
8.Edgar, K. J.; Buchanan, C. M.; Debenham, J. S.; Rundquist, P. A.; Seiler, B. D.; Shelton, M. C.; Tindall, D. (2001) Advances in cellulose ester performance and application. Prog. Polym. Sci. 26:1606-1688.
9.Shafee, E. E.; Saad, G. R.; Fahmy, S. M. (2001) Miscibility, crystallization and phase structure of poly(3-hydroxybutyrate)/cellulose acetate butyrate blends. Euro. Polym. J. 37:2091-2104.
10.Lorenzo, M. L. D.; Rubino, P.; Cocca, M. (2013) Miscibility and properties of poly(L-lactic acid) / poly(butylene terephthalate) blends. Euro. Polym. J. 49:3309-3317.
11.Dangseeyun, N.; Supaphol, P.; Nithitanakul, M. (2004) Thermal, crystallization, and rheological characteristics of poly(trimethylene terephthalate) poly(butylene terephthalate) blends. Polym. Test. 23:187-194.
12.Buchanan, C. M.; Gedon, S. C.; White, A. W.; Wood, M. D. (1993) Cellulose acetate propionate and poly(tetramethylene glutarate) blends. Macromolecules 26:2963-2967.
13.Buchanan, C. M.; Gedon, S. C.; Pearcy, B. G.; White, A. W.; Wood, M. D. (1993) Cellulose ester-aliphatic polyester blends: The influence of diol length on blend miscibility. Macromolecules 26:5704-5710.
14.White, A. W.; Buchanan, C. M.; Pearcy, B. G.; Wood, M. D. (1994) Mechanical properties of cellulose acetate propionate/aliphatic polyester blends. J. Appl. Polym. Sci. 52:525-530.
15.Buchanan, C. M.; Boggs, C. N.; Dorschel, D. D.; Gardner, R. M.; Komarek, R. J.; Watterson, T. L.; White, A. W. (1995) Composting of miscible cellulose acetate propionate-aliphatic polyester blends. J. Environ. Polym. Degrad. 3:1-11.
16.Roy, D.; Semsarilar, M.; Guthrie, J.T. ; Perrier, S. (2009) Cellulose modification by polymer grafting: a review. Chem. Soc. Rev. 38:2046-2064.
17.French, A. D.; Bertoniere, N. R.; Brown, R. M.; Chanzy, H.; Gray, D.; Hattori, K.; Glasser, W. (2003) Encyclopedia of Polymer Science and Technology- Cellulose, John Wiley & Sons, inc.
18.Klemm, D.; Heublein, B.; Fink, H.P.; Bohn, A. (2005) Cellulose: Fascinating Biopolymer and Sustainable Raw Material. Angew. Chem. Int. Ed. 44:3358-3393.
19.Wertz, J. L.; Bédué, O.; Mercier J. P. (2010) Cellulose Science and Technology, chapter 7: Cellulose Derivatives. EPFL PRESS.
20.Illers, K. H. (1980) Heat of fusion and specific volume of poly(ethylene terephthalate) and poly(butylene terephthalate). Colloid. Polym. Sci. 258:117-124.
21.Lu, F. M.; Spruiell, J. E. (1986) Influence of processing conditions on structure development and mechanical properties of poly(butylene terephthalate) filament. J. Appl. Polym. Sci. 31:1595-1607.
22.Bornschlegl, E.; Bonart, R. (1980) Small angle X-ray scattering studies of poly(ethylene terephthalate) and poly(butylene terephthalate). Colloid. Polym. Sci. 258:319-331.
23.Yokouchi, M.; Sakakibara, Y.; Chatani, Y.; Tadokoro, H.; Tanaka, T.; Yoda, K. (1976) Structures of two crystalline forms of poly(butylene terephthalate) and reversible transition between them by mechanical deformation. Macromolecules 9:266-273.
24.Leung, W. P.; Cho, C. L. (1982) Physical properties of oriented poly(butylene terephthalate). J. Appl. Polym. Sci. 27:2693-2709.
25.Sarath, C. C.; Shanks, R. A.; Thomas, S. (2014) Chapter 1: Polymer Blends, in Nanostructured Polymer Blends. William Andrew Publishing: Oxford.
26.Fox, T. G. (1956) Influence of diluent and of copolymer composition on the glass temperature of a polymer system. Bull. Am. Phys. Soc. 1:123-35.
27.Gedde, Ulf. W. (1995) Polymer Physics, chapter 5: The glassy amorphous state. Kluwer Academic Publishers.
28.Gordon, M.; Taylor, J. S. (1952) Ideal copolymers and the second-order transitions of synthetic rubbers. i. non-crystalline copolymers. J. Appl. Chem. 2:493-500.
29.Crevecoeur, G.; Groeninckx, G. (1991) Binary blends of poly(ether ether ketone) and poly(ether imide): miscibility, crystallization behavior and semicrystalline morphology. Macromolecules 24:1190-1195.
30.Keith, H. D.; Padden, F. J. (1964) Spherulitic crystallization from the melt. I. Fractionation and impurity segregation and their influence on crystalline morphology. J. Appl. Polym. Sci. 35:1270-1285.
31.Field, N. D.; Chien, M. C. (1985) Poly(ethylene terephthalate)/cellulose blends. J. Appl. Polym. Sci. 30:2105-2113.
32.Wang, D.; Sun, G. (2007) Formation and morphology of cellulose acetate butyrate (CAB)/ polyolefin and CAB/polyester in situ microfibrillar and lamellar hybrid blends. Euro. Polym. J. 43:3587-3596.
33.Wang, D.; Sun, G.; Chiou, B. S. (2007) Fabrication of tunable submicro‐ or nano‐structured polyethylene materials from immiscible blends with cellulose acetate butyrate. Macromol. Mater. Eng. 292:407-414.
34.Wang, D.; Sun, G.; Chiou, B. S.; Hinestroza, J. P. (2007) Controllable fabrication and properties of polypropylene nanofibers. Polym. Eng. Sci. 47:1865-1872.
35.Wang, D.; Sun, G.; Chiou, B. S. (2008) Fabrication of tunable submicro‐ or nano‐structured polyethylene materials from immiscible blends with cellulose acetate butyrate. Macromol. Mater. Eng. 293:657-665.
36.Li, M. F.; Xiao, R.; Sun, G. (2011) Formation and morphology development of poly(butylene terephthalate) nanofibers from poly(butylene terephthalate)/cellulose acetate butyrate immiscible blends. Polym. Eng. Sci. 51:835-842.
37.Li, M. F.; Xiao, R.; Sun, G. (2012) Preparation of polyester nanofibers and nanofiber yarns from polyester/cellulose acetate butyrate immiscible polymer blends. J. Appl. Polym. Sci. 124:28-36.
38.Wang, D.; Sun, G. (2011) Novel polymer blends from polyester and bio-based cellulose ester. J. Appl. Polym. Sci. 119:2302-2309.
39.Nabar, Y. U.; Gupta, A.; Narayan, R. (2005) Isothermal crystallization kinetics of poly (ethylene terephthalate) – cellulose acetate blends. Polym. Bull. 53:117–125.
40.Vázquez-Torres, H.; Cruz-Ramos, C. A. (1994) Blends of cellulosic esters with poly(caprolactone): Characterization by DSC, DMA, and WAXS. J. Appl. Polym. Sci. 54:1141-1159.
41.Nishio, Y.; Matsuda, K.; Miyashita, Y.; Kimura, N.; Suzuki, H.; (1997) Blends of poly(-caprolactone) with cellulose alkyl esters: effect of the alkyl side-chain length and degree of substitution on miscibility. Cellulose 4:131–145.
42.Kusumi, R.; Inoue, Y.; Shirakawa M.; Miyashita, Y.; Nishio, Y. (2008) Cellulose alkyl ester/poly(-caprolactone) blends: characterization of miscibility and crystallization behavior. Cellulose 15:1–16.
43.Tachibana, Y.; Giang, N. T. T.; Ninomiya, F.; Funabashi, M.; Kunioka, M. (2010) Cellulose acetate butyrate as multifunctional additive for poly(butylene succinate) by melt blending:mechanical properties, biomass carbon ratio, and control of biodegradability. Polym. Degrad. Stab. 95:1406-1413.
44.Xing, C.; Wang, H.; Hu, Q.; Xu, F.;Cao, X.; You, J. (2013) Mechanical and thermal properties of eco-friendly poly(propylene carbonate)/cellulose acetate butyrate blends. Carbohydr. Polym. 92:1921-1927.
45.Park, M. S; Kim, J. K. (2002) Phase behavior and crystallization of a poly(ethylene oxide)/cellulose acetate butyrate blend. J. Polym. Sci. Part B: Polym. Phys. 40: 1673-1681.
46.Lee, S. H.; Yoshioka, M.; Shiraishi, N. (2000) Polymer blend of cellulose acetate butyrate and aliphatic polyestercarbonate. J. Appl. Polym. Sci. 77:2908-2914.
47.Ceccorulli, G.; Pizzoli, M.; Scandola, M. (1993) Effect of a low-molecular-weight plasticizer on the thermal and viscoelastic properties of miscible blends of bacterial poly(3-hydroxybutyrate) with cellulose acetate butyrate. Macromolecules 26:6722-6726.
48.Wang, T. Z.; Cheng, G. X.; Ma, S. H.; Cai, Z. J.; Zhang, L. G. (2003) Crystallization behavior, mechanical properties, and environmental biodegradability of poly(β‐hydroxybutyrate)/cellulose acetate butyrate blends. J. Appl. Polym. Sci. 89:2116-2122.
49.Park, J. W.; Tanaka, T.; Doi, Y.; Iwata, T. (2005) Uniaxial drawing of poly[(R)-3-hydroxybutyrate] / cellulose acetate butyrate blends and their orientation behavior. Macromol. Biosci. 5:840–852.
50.Uesaka, T.; Nakane, K.; Maeda, S.; Ogihara, T.; Ogata, N. (2000) Structure and physical properties of poly(butylene succinate)/cellulose acetate blends. Polymer 41:8449–8454.
51.Tatsushima, T.; Ogata, N.; Nakane, K.; Ogihara, T. (2005) Structure and physical properties of cellulose acetate butyrate/poly(butylene succinate) blend. J. Appl. Polym. Sci. 96:400-406.
52.Company, E.C., Eastman Cellulose Esters. Publication E-325, (2016)
53.Wang, Y. M.; Xu, Y. M.; He, D. R.; Yao, W.; Liu, C. T.; Shen, C. Y. (2014) “Nucleation density reduction” effect of biodegradable cellulose acetate butyrate on the crystallization of poly(lactic acid). Mater. Lett. 128:85-88.
54.Li, R. K. Y.; Tjong, S. C.; Xie, X. L. (2000) The structure and physical properties of in situ composites based on semiflexible thermotropic liquid crystalline copolyesteramide and poly(butylene terephthalate). J. Polym. Sci., Part B: Polym. Phys. 38:403-414.
55.Wen, M.; Sun, X.; Su, L.; Shen, J.; Li, J.; Guo S. (2012) The electrical conductivity of carbon nanotube/carbon black/polypropylene composites prepared through multistage stretching extrusion. Polymer 53:1602–1610.
56.Li, S.; Ma, Y.; Fu, T.; Zhu, C.; Li, H. (2012) The viscosity distribution around a rising bubble in shear-thinning non-newtonian fluids. Braz. J. Chem. Eng. 29:265–274.
57.Cicero, J. A.; Dorgan, J. R. (2001) Physical Properties and Fiber Morphology of Poly(lactic acid) Obtained from Continuous Two-Step Melt Spinning. J. Polym. Environ. 9:1-10.
58.Kim, C.H.; Choi, E. J.; Park, J. K. (2000) Effect of PEG molecular weight on the tensile toughness of starch/PCL/PEG blends. J. Appl. Polym. Sci. 77:2049-2056.
59.Kim, C. H.; Kim, D. W.; Cho, K. Y. (2009) The influence of PEG molecular weight on the structural changes of corn starch in a starch-PEG blend. Polym. Bull. 63:91-99.
60.Mckee, M. G.; Wilkes, G. L.; Colby, R. H.; Long, T. E. (2004) Correlations of solution rheology with electrospun fiber formation of linear and branched polyesters. Macromolecules 37:1760-1767.
61.Dong, Y.; Liao, S.; Ngiam, M.; Chan, C. K.; Ramakrishna, S. (2009) Degradation behaviors of electrospun resorbable polyester nanofibers. Tissue. Eng. Part B. 15:333-351.
62.Reneker, D. H.; Chun, I. (1996) Nanometre diameter fibres of polymer, produced by electrospinning. Nanotechnology 7:216-223.
63.Veleirinho, B.; Rei, M. F.; Lopes-DA-Silva, J. A. (2008) Solvent and concentration effects on the properties of electrospun poly(ethylene terephthalate) nanofiber mats. J. Polym. Sci. Part B: Polym. Phys. 46:460-471.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/70629-
dc.description.abstract本研究主要針對聚對苯二甲酸丁二酯(PBT)與纖維素醋酸丙酸酯(CAP)兩相高分子依不同組成比例進行一系列摻合物加工與其性質研究,並藉由低分子量聚乙二醇(PEG)作為相容化劑,期間透過雙螺桿混練設備進行混摻造粒,再以熱壓成型與熔融紡絲不同加工程序製備該摻合物薄膜或其纖維,並探討摻合物成分間相容性變化及摻合物薄膜與纖維之熱性質、結晶行為、微結構、親水性與機械性質。
論文內容包含三大部分,第一部分係以PBT為連續相,而CAP扮演分散相,其添加比例由5~15wt%,相關研究結果彙整於第三章。其次,第二部分為第一部分內容延伸,於兩相高分子系統中導入低分子量PEG作為相容化劑,整體摻合系統實際變為三相高分子而較為複雜,相關分析結果彙整於第四章。最後,第三部分則係以CAP為連續相,PBT則轉換為分散相,其添加比例一樣為5~15wt%,但因CAP為主的摻合物於混練造粒、熱壓成膜與紡絲階段皆因無法連續成型,因此相關研究僅揭露逕行添加低分子量PEG的摻合系統進行分析,相關討論彙整於第五章中。
研究證實PBT與CAP為不相容的摻混系統,因為各自的玻璃轉化溫度(Tg)皆不隨組成不同而改變,然而若有小分子的PEG加入,會使兩者Tg皆降低,意即摻合物轉變為部分相容系統。此外,CAP由於其化學結構剛硬與側鏈多,因此加工過程中不易形成結晶,而CAP與PEG的存在會影響連續相PBT的結晶行為,因此隨著CAP或PEG的含量增加,PBT的結晶溫度會向低溫移動且降低PBT結晶度;反之,當PBT作為分散相時在高溫下難以成核結晶,因此需要到CAP的Tg溫度之下藉由異相成核來結晶,結晶溫度則明顯由190°C降至110°C。其次,透過偏光顯微鏡進行摻合物恆溫結晶行為觀察,以PBT連續相時恆溫結晶,會產生緻密的球晶形態,其大小會隨著CAP或P-CAP添加量增加而變大;而P-CAP為連續相時恆溫結晶則多為非結晶形態,僅有少量細小的PBT球晶存在。而透過掃描式電子顯微鏡進行摻合物薄膜微結構觀察,發現分散相皆以球形顆粒存在於薄膜中,但當摻合物經過紡絲延伸加工後,分散相均變形為棒狀或纖維狀。
而就摻合物纖維研究結果顯示,PBT組分在纖維中的結晶度均較薄膜大,主要原因在於摻合物經過順向延伸後,PBT分子鏈的規則排列增加所導致,並且其結晶結構由α形態轉變為β形態。以PBT為連續相的纖維,隨著CAP或P-CAP的加入會使拉伸強度降低,但斷裂伸長率卻有大幅的提升;此外,以PBT為分散相的纖維,經由丙酮溶除連續相,可以製備出直徑為50~70nm之間的PBT奈米纖維。
zh_TW
dc.description.abstractThis study is devoted to develop a series binary blends of poly(butylene terephthalate) (PBT) and cellulose acetate propionate (CAP) as a thermoplastic and renewable material, which could be applied for melt-spun fibers or other engineering plastics in the future. In order to improve the interfacial strength and miscibility between these two polymers by using a low-molecular-weight poly(ethylene glycol) (PEG) as a potential compatibilizer. A twin-screw extruder was applied to melt-compound these components to prepare the CAP/PBT, P-CAP/PBT, and PBT/P-CAP blends which were further processed into films and fibers by compression-molding and spinning, respectively. The morphology and crystallization behavior of the prepared films and fibers were examined. Moreover, their thermal, miscibility, and mechanical properties were also investigated.
There are three major parts in the thesis. The first part:the CAP, as a dispersed phase, was mixed with the PBT in the composition range of 5 to 15wt%. Their related results were reported in the chapter 3. The next part:the content extension of the first part, a low-molecular-weight PEG as a compatibilizer, was introduced into previous binary blends systems. Their related results were summarized in the chapter 4. The third part, the binary blends of CAP and PBT were exchanged roles, which CAP be a continues phase. However, these binary blends could not be compounded smoothly and spun continuously, so we can't measure and analyze these specimen. Thus we tried again to blend CAP-PBT with PEG, and hopefully developed the films and fibers from the blends. Their related results were discussed in the chapter 5.
The presence of two invariant glass transition temperatures corresponding to the CAP and PBT components implied that the CAP/PBT blends were immiscible. However, CAP/PBT blends became partially miscible after a low-molecular-weight PEG, as a compatibilizer, was added. In addition, the CAP in the blends could not crystallize during the cooling process from the molten state because of its rigid structure and thus existed in the amorphous state. This suggests that the presence of the amorphous CAP component and low-molecular-weight PEG hinders the arrangement of PBT component, leading to the reduction of the crystallization temperature of the PBT component. However, the crystallization temperature of the PBT component decreased greatly from 190°C for the neat PBT to 110°C, the PBT component was crystallized at the temperature below the Tg of CAP as it was a dispersed phase in CAP/PBT films through heterogeneous nucleation. From the isothermal crystallization behavior observation, it can be clearly found that PBT all form dense spherulites and collide with each other under various compositions. These spherulites become larger with more P-CAP added in the blend. From the SEM observation, the CAP component domains deform from the dispersed particles in the compression-molded films to the rods in the spun-fibers owing to the spinning orientation.
Moreover, the crystallinity of the PBT component was higher in the spun fibers than in the films, possibly owing to the chain orientation in the spinning process. In the blend systems of PBT as a continuous phase, the presence of the amorphous CAP or low-molecular-weight PEG in the spun fibers caused a decrease in the tensile strength and an increase in the elongation at break. However, in the blend systems of CAP as a continuous phase, the ultra-fine PBT nanofibers with diameters in the range of 50 ~ 70nm were observed after removing the P-CAP matrix with acetone from the fibers, owing to the formation of PBT nanofibers during spinning and orientation processes. This method thus could successfully produce nano-scale PBT fibers with fineness comparable with the nanofibers developed via electrospinning technology.
en
dc.description.provenanceMade available in DSpace on 2021-06-17T04:33:06Z (GMT). No. of bitstreams: 1
ntu-107-D96549014-1.pdf: 5505207 bytes, checksum: c6875bf7c28589aa3f76cf6c2401931d (MD5)
Previous issue date: 2018
en
dc.description.tableofcontents口試委員會審定書
誌謝 .................................................................................................................................I
Abstract (Chinese) .........................................................................................................II
Abstract .........................................................................................................................IV
Contents .......................................................................................................................VII
List of Tables ..................................................................................................................X
List of Schemes ............................................................................................................XII
List of Figures ............................................................................................................XIII
Chapter 1. Introduction .............................................................................................001
1.1 Research Background and Motives ..............................................................001
1.2 Research Frameworks ...................................................................................002
Chapter 2. Literature Reviews ..................................................................................005
2.1 Cellulose Modification and Derivatives .......................................................005
2.2 Polyester and its properties ...........................................................................010
2.3 Polymer Blending ...........................................................................................013
2.4 Cellulose Ester / Polyester Blend ..................................................................018
Chapter 3. Preparation of PBT-based Blend Films, Fibers and their Characterizations .....................................................................................023
3.1 Introduction .....................................................................................................023
3.2 Experimental ...................................................................................................024
3.2.1 Materials
3.2.2 Preparation CAP/PBT Blend Films and Fibers
3.2.3 Characterization Measurements
3.3 Result and Discussion .....................................................................................029
3.3.1 Thermal Transitions and Crystallization Behaviors of the CAP/PBT Films
3.3.2 Dynamic Mechanical Properties of the CAP/PBT Films
3.3.3 Morphology of the CAP/PBT Films
3.3.4 Water Contact Angle of the CAP/PBT Films
3.3.5 Apparent Viscosity of the CAP/PBT Blends
3.3.6 Thermal Transition Properties of the Spun CAP/PBT Fibers
3.3.7 Microstructure of the CAP/PBT Fibers
3.3.8 Tensile Mechanical Properties of the CAP/PBT Fibers
3.4 Conclusions ......................................................................................................049
Chapter 4. Fiber and Film Developments from Partially Miscible Blends of CAP/PBT with PEG .................................................................................050
4.1 Introduction .....................................................................................................050
4.2 Experimental ...................................................................................................051
4.2.1 Materials
4.2.2 Preparation P-CAP/PBT Blend Films and Fibers
4.2.3 Characterization Measurements
4.3 Result and Discussion .....................................................................................055
4.3.1 Thermal Transitions and Crystallization Behaviors of the P-CAP/PBT Films
4.3.2 Dynamic Mechanical Properties of the P-CAP/PBT Films
4.3.3 Morphology of the P-CAP/PBT Films
4.3.4 Water Contact Angle of the P-CAP/PBT Films
4.3.5 Thermal and Mechanical Properties of the P-CAP/PBT Fibers
4.3.6 Morphology and Microstructure of the P-CAP/PBT Fibers
4.4 Conclusions ......................................................................................................071
Chapter 5. Effect of the Low-Molecular-Weight PEG Compatibilizer on the CAP-based Blend Films and Fibers .......................................................073
5.1 Introduction .....................................................................................................073
5.2 Experimental ...................................................................................................074
5.2.1 Materials
5.2.2 Preparation PBT/P-CAP Blend Films and Fibers
5.2.3 Characterization Measurements
5.3 Result and Discussion .....................................................................................078
5.3.1 Thermal Properties of the PBT/P-CAP Films
5.3.2 Dynamic Mechanical Properties of the PBT/P-CAP Films
5.3.3 Isothermal Crystallization Behavior of the PBT/P-CAP Films
5.3.4 Morphology and Microstructure of the PBT/P-CAP Films
5.3.5 Thermal and Mechanical Properties of the PBT/P-CAP Fibers
5.3.6 Morphology and Microstructure of the PBT/P-CAP Fibers
5.4 Conclusions ......................................................................................................101
Chapter 6. Conclusions ..............................................................................................103
Chapter 7. Suggestion of Future Work .....................................................................107
Reference .....................................................................................................................109
Personal Publication List ...........................................................................................116
dc.language.isoen
dc.title聚對苯二甲酸丁二酯與纖維素醋酸丙酸酯摻合物薄膜、纖維及其性質分析zh_TW
dc.titlePoly(butylene terephthalate) and Cellulose Acetate Propionate Blend Films, Fibers, and their Characterizationsen
dc.typeThesis
dc.date.schoolyear106-2
dc.description.degree博士
dc.contributor.coadvisor童世煌(Shih-Huang Tung)
dc.contributor.oralexamcommittee廖文彬(Wen-Bin Liau),董崇民(Trong-Ming Don),李佳芬(Chia-Fen Lee)
dc.subject.keyword聚對苯二甲酸丁二酯,纖維素醋酸丙酸酯,聚乙二醇,高分子混摻,相容性,熔融紡絲,zh_TW
dc.subject.keywordPoly(butylene terephthalate) (PBT),Cellulose Acetate Propionate (CAP),Poly(ethylene glycol) (PEG),Polymer Blend,Miscibility,Melt Spinning,en
dc.relation.page117
dc.identifier.doi10.6342/NTU201802918
dc.rights.note有償授權
dc.date.accepted2018-08-10
dc.contributor.author-college工學院zh_TW
dc.contributor.author-dept高分子科學與工程學研究所zh_TW
顯示於系所單位:高分子科學與工程學研究所

文件中的檔案:
檔案 大小格式 
ntu-107-1.pdf
  目前未授權公開取用
5.38 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved