請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/70622完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 林?輝(Feng-Huei Lin) | |
| dc.contributor.author | Wei-Che Chang | en |
| dc.contributor.author | 張瑋哲 | zh_TW |
| dc.date.accessioned | 2021-06-17T04:32:53Z | - |
| dc.date.available | 2018-08-14 | |
| dc.date.copyright | 2018-08-14 | |
| dc.date.issued | 2018 | |
| dc.date.submitted | 2018-08-10 | |
| dc.identifier.citation | [1] J. Faweett, R.J. Keynes, Peripheral nerve regeneration, Annual review of neuroscience 13(1) (1990) 43-60.
[2] F.J. Rodrı́guez, E. Verdú, D. Ceballos, X. Navarro, Nerve guides seeded with autologous Schwann cells improve nerve regeneration, Experimental neurology 161(2) (2000) 571-584. [3] W. Daly, L. Yao, D. Zeugolis, A. Windebank, A. Pandit, A biomaterials approach to peripheral nerve regeneration: bridging the peripheral nerve gap and enhancing functional recovery, Journal of the Royal Society Interface (2011) rsif20110438. [4] D. Arslantunali, T. Dursun, D. Yucel, N. Hasirci, V. Hasirci, Peripheral nerve conduits: technology update, Medical Devices (Auckland, NZ) 7 (2014) 405. [5] W.-F. Su, C.-C. Ho, T.-H. Shih, C.-H. Wang, C.-H. Yeh, Exceptional biocompatibility of 3D fibrous scaffold for cardiac tissue engineering fabricated from biodegradable polyurethane blended with cellulose, International Journal of Polymeric Materials and Polymeric Biomaterials 65(14) (2016) 703-711. [6] J. Reece, G. Bielmyer, J. Elder, T. Grove, Principles of Biology II, (2016). [7] A. Faroni, S.A. Mobasseri, P.J. Kingham, A.J. Reid, Peripheral nerve regeneration: experimental strategies and future perspectives, Advanced drug delivery reviews 82 (2015) 160-167. [8] D.-C. Lee, J.-H. Chen, T.-Y. Hsu, L.-H. Chang, H. Chang, Y.-H. Chi, M. Chiu, Neural stem cells promote nerve regeneration through IL12-induced schwann cell differentiation, Molecular and Cellular Neuroscience 79 (2017) 1-11. [9] Y.K. Axelrod, M.N. Diringer, Temperature management in acute neurologic disorders, Neurologic clinics 26(2) (2008) 585-603. [10] K. Oyama, V. Zeeb, Y. Kawamura, T. Arai, M. Gotoh, H. Itoh, T. Itabashi, M. Suzuki, S.i. Ishiwata, Triggering of high-speed neurite outgrowth using an optical microheater, Scientific reports 5 (2015). [11] K.L. Williams, M. Rahimtula, K.M. Mearow, Heat shock protein 27 is involved in neurite extension and branching of dorsal root ganglion neurons in vitro, Journal of neuroscience research 84(4) (2006) 716-723. [12] M.Y. Macias, J.H. Battocletti, C.H. Sutton, F.A. Pintar, D.J. Maiman, Directed and enhanced neurite growth with pulsed magnetic field stimulation, Bioelectromagnetics 21(4) (2000) 272-286. [13] B.a.L. Shier, Hole's Essentials of Human Anatomy and Physiology 8th Edition (Eighth Edition) 2003. [14] A.M.I.S.A.I.E. Health, Diseases Of The Peripheral Nerves. [15] S. Sunderland, Nerves and nerve in juries, Edinburgh: Livingsstone1972 201 (1978). [16] C. Kisner, L.A. Colby, Therapeutic exercise: foundations and techniques, Fa Davis2012. [17] A.J. Reid, A.C. de Luca, A. Faroni, S. Downes, M. Sun, G. Terenghi, P.J. Kingham, Long term peripheral nerve regeneration using a novel PCL nerve conduit, Neuroscience letters 544 (2013) 125-130. [18] X. Wang, L. Chen, Q. Ao, A. Sharma, H.S. Sharma, Progress in the research and development of nerve conduits, Translational Neuroscience and Clinics 1(2) (2016) 97-101. [19] Y.-G. Zhang, Q.-S. Sheng, H.-K. Wang, L. Lv, J. Zhang, J.-M. Chen, H. Xu, Triptolide improves nerve regeneration and functional recovery following crush injury to rat sciatic nerve, Neuroscience letters 561 (2014) 198-202. [20] G.C. de Ruiter, M.J. Malessy, M.J. Yaszemski, A.J. Windebank, R.J. Spinner, Designing ideal conduits for peripheral nerve repair, Neurosurgical focus 26(2) (2009) E5. [21] 王永红, 戴红莲, 李世普, 神经导管生物材料的研究, 武汉理工大学学报 (12) (2009) 62-67. [22] V. Mukhatyar, L. Karumbaiah, J. Yeh, R. Bellamkonda, Tissue engineering strategies designed to realize the endogenous regenerative potential of peripheral nerves, Advanced Materials 21(46) (2009) 4670-4679. [23] S. Sano, K. Kato, Y. Ikada, Introduction of functional groups onto the surface of polyethylene for protein immobilization, Biomaterials 14(11) (1993) 817-822. [24] M. Qin, S. Hou, L. Wang, X. Feng, R. Wang, Y. Yang, C. Wang, L. Yu, B. Shao, M. Qiao, Two methods for glass surface modification and their application in protein immobilization, Colloids and Surfaces B: Biointerfaces 60(2) (2007) 243-249. [25] F.M. Barras, P. Pasche, N. Bouche, P. Aebischer, A.D. Zurn, Glial cell line‐derived neurotrophic factor released by synthetic guidance channels promotes facial nerve regeneration in the rat, Journal of neuroscience research 70(6) (2002) 746-755. [26] M.I. Hobson, Increased vascularisation enhances axonal regeneration within an acellular nerve conduit, Annals of the Royal College of Surgeons of England 84(1) (2002) 47. [27] X. Xu, W.-C. Yee, P.Y. Hwang, H. Yu, A.C. Wan, S. Gao, K.-L. Boon, H.-Q. Mao, K.W. Leong, S. Wang, Peripheral nerve regeneration with sustained release of poly (phosphoester) microencapsulated nerve growth factor within nerve guide conduits, Biomaterials 24(13) (2003) 2405-2412. [28] H. Lin, N. Hikawa, T. Takenaka, Y. Ishikawa, Interleukin-12 promotes neurite outgrowth in mouse sympathetic superior cervical ganglion neurons, Neuroscience letters 278(3) (2000) 129-132. [29] S. Gunsten, C.L. Mikols, M.H. Grayson, R.A. Schwendener, E. Agapov, R.M. Tidwell, C.L. Cannon, S.L. Brody, M.J. Walter, IL‐12 p80‐dependent macrophage recruitment primes the host for increased survival following a lethal respiratory viral infection, Immunology 126(4) (2009) 500-513. [30] Y.-J. Son, W.J. Thompson, Schwann cell processes guide regeneration of peripheral axons, Neuron 14(1) (1995) 125-132. [31] K. Bhatheja, J. Field, Schwann cells: origins and role in axonal maintenance and regeneration, The international journal of biochemistry & cell biology 38(12) (2006) 1995-1999. [32] S. Madduri, B. Gander, Schwann cell delivery of neurotrophic factors for peripheral nerve regeneration, Journal of the Peripheral Nervous System 15(2) (2010) 93-103. [33] Y.S. Zhang, K.P. Regan, Y. Xia, Controlling the pore sizes and related properties of inverse opal scaffolds for tissue engineering applications, Macromolecular rapid communications 34(6) (2013) 485-491. [34] 羅聖全, 電子顯微鏡介紹-SEM, 小奈米大世界, 2003. [35] J.M. Hodgkinson, Mechanical testing of advanced fibre composites, Elsevier2000. [36] C.M. Agrawal, K.A. Athanasiou, Technique to control pH in vicinity of biodegrading PLA-PGA implants, Journal of biomedical materials research 38(2) (1997) 105-114. [37] 吳耀庭, 黃曉鳳, 溫俊祥, 經. 工研院材料所高分子界面工程技術部*副研究員, 電漿表面處理在生醫材料上之應用, 工研院材料所高分子介面工程研究部, 2004. [38] M. Gołda-Cępa, N. Aminlashgari, M. Hakkarainen, K. Engvall, A. Kotarba, LDI-MS examination of oxygen plasma modified polymer for designing tailored implant biointerfaces, RSC Advances 4(50) (2014) 26240-26243. [39] R.F. Wallin, A Practical Guide to ISO 10996-12 : Sample Preparation and Reference Materials, (1993). [40] Cell Proliferation Reagent WST-1,. [41] T.L. Riss, R.A. Moravec, A.L. Niles, S. Duellman, H.A. Benink, T.J. Worzella, L. Minor, Cell viability assays, (2016). [42] M. Smit, J. Leng, R.L. Klemke, Assay for neurite outgrowth quantification, Biotechniques 35(2) (2003) 254-255. [43] F. Kanaya, J.C. Firrell, W.C. Breidenbach, Sciatic function index, nerve conduction tests, muscle contraction, and axon morphometry as indicators of regeneration, Plastic and reconstructive surgery 98(7) (1996) 1264-1271. [44] 童麗珠, 葉雯芳, 羅惠如, 神經修護與保護, 科學教育月刊 (2008). [45] 臺.復. 梁蕙雯, 神經電學檢查於神經根病變診斷之應用, 第52卷第1期 台北市醫師公會會刊 (2008年). | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/70622 | - |
| dc.description.abstract | 神經導管修復(Nerve guidance conduit repair ,NGC repair) 雖然並不是目前治療周圍神經損傷的最佳首選,但為了改善其他周圍神經修補的缺點,因此神經導管修補這個技術的開發是個很重要的研究方向,也作為本實驗用以治療周圍神經損傷的修復方法。在目前大多數的研究中,將神經成長因子固定於導管內壁,並且期望能夠提升神經再生的效果,但結果卻往往差強人意,原因是在周邊神經損傷的再生中扮演最重要的腳色的是許旺細胞這類型的支持細胞,這個細胞也是構成髓鞘之的原料。因此在大多的研究中往往只能讓軸突進行再生,但最重要的髓鞘卻常常難以再現。
在本實驗中選用乙基纖維素強化之聚己內酯(Poly(ε-caprolactone) blended with cellulose, PCLC)作為導管材料,除此之外,在導管內固定上Interlukin-12p80,期望能將病患體內的原生神經幹細胞誘導分化為許旺細胞類的支持細胞,藉此讓周圍神經的再生效果更佳。而在導管內部混上磁性粒子,並藉由變化磁場之作用讓導管產生熱能,藉此運用熱療來修復神經。在本實驗中運用熱療及Interlukin-12p80的共同作用來促使周圍神經之再生。 經由SEM影像顯示,經過本論文之製成後能夠有效的合成出來具有內層大孔洞外層小孔洞之目標導管結構。經WST-1檢驗,其結果符合ISO10993之規範,證明該材料具有良好生物相容性。在體驗試驗的結果中,我們證實了熱效應確實對於神經軸突之生長有促進之效果。動物實驗的部分,藉由實驗結果顯示,導管在經由磁場刺激作用之後依然能夠有良好的升溫效果。 | zh_TW |
| dc.description.abstract | Although Nerve guidance conduits repair is not the best choice for peripheral nerve repair, for improving the shortcomings of other peripheral nerve repair methods, this method is the most important technique in the peripheral nerve repair. Therefore, we use nerve guidance conduits repair to cure peripheral nerve injury. In most of the current research, the neural growth factor is fixed to the inner wall of the conduit, and expect to be able to enhance the nerve regeneration , but the results are often disappointing. The reason is that in the peripheral nerve injury regeneration, Schwann cell play an important role in peripheral nerve regeneration which is a type of supporting cell, this cell also constitute the myelin sheath.
In our experiment, we use ethyl cellulose to reinforce polycaprolactone as nerve conduit. Otherwise, we will immobilize Interlukin-12p80 on the inner side of the nerve conduit and expect that Interlukin-12p80 can direct neuron stem cells, which are found near the regeneration site, to differentiate toward supporting cell such as Schwann cell. And in the conduit, we will blend with Fe3O4 for generating heat with the pulsed magnetic field. Owing to the cooperation of the heat treatment, pulsed magnetic field and Interlukin-12p80, we can expect that there will have good results in peripheral nerve regeneration. The SEM image show that we successfully fabricated porous PCLC conduits with big pore inside and small pore outside of the conduit. in the WST-1 test results, the experiment follow the specification of ISO-10993, PCLC shown to be biocompatible. Through the result of in vitro test, we know that heat treatment indeed can promote neurite outgrowth. In the part of animal study, result shows that conduit still have good warming ability after stimulated by magnetic field. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-17T04:32:53Z (GMT). No. of bitstreams: 1 ntu-107-R05548001-1.pdf: 3968097 bytes, checksum: ed2983a14715a3554af9c176ed6ee2b3 (MD5) Previous issue date: 2018 | en |
| dc.description.tableofcontents | 口試委員會審定書 #
中文摘要 i ABSTRACT ii 目錄 iii 圖目錄 vii 表目錄 ix 公式目錄 x 名詞縮寫目錄 xi 緒論 1 1.1Equation Chapter 1 Section 1 前言 1 1.2 生物可降解之高分子-Poly(ε-caprolactone)blended with cellulose (PCLC) 2 1.2.1 聚己內酯Poly (ε-caprolactone, PCL) 2 1.2.2 乙基纖維素(ethyl cellulose, EC) 2 1.3 支持細胞(supporting cells) 3 1.4 熱效應於神經修復的重要性 3 1.5 研究目的 4 Chapter 2 理論基礎 5 2.1 神經系統簡介 5 2.1.1 神經元的簡介 6 2.1.2 神經元的分類 7 2.1.3 神經膠細胞的簡介 8 2.1.4 周邊神經系統的結締組織 9 2.2 周邊神經系統損傷及修復再生 10 2.2.1 神經損傷及再生的過程 10 2.2.2 神經損傷的程度分類 11 2.3 神經再生導管之研究發展 13 2.3.1 修復方式 13 2.3.2 神經導管材料發展 14 2.3.3 神經導管的概念 15 2.4 材料表面固定生物分子方法與原理 16 2.4.1 物理吸附(Physical adsorption) 16 2.4.2 膠體包埋法(gel entrapment) 16 2.4.3 共價鍵結法(Covalent bonding) 17 2.5 神經的生長因子 18 2.5.1 Interleukin-12p80(IL-12p80) 18 Chapter 3 實驗方法 19 3.1 實驗儀器 19 3.2 實驗藥品 20 3.3 實驗架構與流程 21 3.4 材料製備與分析 22 3.4.1 材料製備 22 3.4.2 含有磁性粒子之神經導管製作 22 3.4.3 材料分析 23 3.5 Interleukin-12 p80之固定 24 3.5.1 實驗步驟 24 3.5.2 固定濃度測試 25 3.5.3 氧氣電漿機 25 3.6 生物相容性試驗 26 3.6.1 細胞培養 26 3.6.2 材料萃取液之製備 26 3.6.3 WST-1 細胞活性測試 27 3.7 體外實驗 28 3.7.1 溫度對於神經軸突生長之試驗 28 3.7.2 神經細胞軸突生長體外試驗 28 3.7.3 細胞免疫螢光染色 29 3.8 動物實驗 30 3.8.1 神經導管產熱實驗 30 3.8.2 神經受損動物模型及神經導管植入 31 3.8.3 坐骨神經功能指數(Sciatic Function Index, SFI) 32 3.8.4 複合肌肉動作電位試驗(Compound muscle action potential, CMAP) 33 3.8.5 神經傳導速率(Nerve conduction velocity, NCV) 33 3.8.6 組織形態學評估 34 3.9 統計學方法 34 Chapter 4 結果與討論 35 4.1 材料分析 35 4.1.1 掃描式電子顯微鏡(Scanning Electron Microscope, SEM)分析 35 4.2 生物相容性 37 4.3 IL-12p80固定效率檢測 39 4.4 體外試驗 40 4.4.1 溫度對於神經軸突生長之試驗 40 4.5 動物實驗 43 4.5.1 神經導管產熱實驗 43 4.5.2 小鼠跑步機行為測試(Rotor rod test) 44 4.5.3 肌肉組織再生(Muscle tissue regeneration) 46 Chapter 5 總結 48 參考文獻 49 | |
| dc.language.iso | zh-TW | |
| dc.subject | Interlukin-12p80 | zh_TW |
| dc.subject | 神經導管 | zh_TW |
| dc.subject | 磁場 | zh_TW |
| dc.subject | 磁性粒子 | zh_TW |
| dc.subject | Magnetic field | en |
| dc.subject | Nerve conduit | en |
| dc.subject | Interlukin-12p80 | en |
| dc.subject | Magnetite | en |
| dc.title | 乙基纖維素強化之聚己內酯神經導管內部固定Interlukin-12p80及混入磁性粒子用於周邊神經再生
導管之研究 | zh_TW |
| dc.title | Biodegradable poly(ε - caprolactone)base conduits blended with cellulose and magnetite and immobilized
Interlukin-12p80 for peripheral nerve regeneration | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 106-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 陳克紹(Ko-Shao, Chen),孫瑞昇(Jui-Sheng Sun),柯承志(Cherng-Jyh Ke),胡名孝(Ming-Hsiao Hu) | |
| dc.subject.keyword | 神經導管,Interlukin-12p80,磁性粒子,磁場, | zh_TW |
| dc.subject.keyword | Nerve conduit,Interlukin-12p80,Magnetite,Magnetic field, | en |
| dc.relation.page | 52 | |
| dc.identifier.doi | 10.6342/NTU201802890 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2018-08-10 | |
| dc.contributor.author-college | 工學院 | zh_TW |
| dc.contributor.author-dept | 醫學工程學研究所 | zh_TW |
| 顯示於系所單位: | 醫學工程學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-107-1.pdf 未授權公開取用 | 3.88 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
