請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/70615完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 張宏鈞教授 | |
| dc.contributor.author | Ching-Hsing Su | en |
| dc.contributor.author | 蘇晉興 | zh_TW |
| dc.date.accessioned | 2021-06-17T04:32:40Z | - |
| dc.date.available | 2018-08-14 | |
| dc.date.copyright | 2018-08-14 | |
| dc.date.issued | 2018 | |
| dc.date.submitted | 2018-08-10 | |
| dc.identifier.citation | Albani, M. and P. Bernardi, “A numerical method based on the discretization of Maxwell equations in integral form,” IEEE Trans. Microwave Theory Tech., vol. 22, pp. 446-450, 1974.
Albella, P., T. Shibanuma and S. A. Maier, “Switchable directional scattering of electromagnetic radiation with subwavelength asymmetric silicon dimers particles,” Sci. Rep., vol. 5, no. 18322, 2015. Atwater, H. A. and A. Polman, “Plasmonics for improved photovoltaic devices,” Nat. Mater., vol. 9, pp. 205-213, 2010. Akiyama, Y., T. Mori, Y. Katayama and T. Niidome, “Conversion of rod-shaped gold nanoparticles to spherical forms and their effect on biodistribution in tumor-bearing mice,” Nanoscale Res. Lett., vol. 7, no. 565, 2012. Berenger, J. P., “A perfectly matched layer for the absorption of electromagnetic waves,” J. Comput. Phys., vol. 114, pp. 185--200, 1994. Bohren, C. F. and D. R. Huffman, Absorption and Scattering of Light by Small Particles, John Wiley and Sons, 1983. Courant, R., K. Friedrichs and H. Lewy, “Uber die partiellen differenzengleichungen der mathematischen physik,” Math. Ann., vol. 100, pp. 32--74, 1928. Curto, A. G., G. Volpe, T. H. Taminiau, M. P. Kreuzer, R. Quidant and N. F. van Hulst, “Unidirectional emission of a quantum dot coupled to a nanoantenna,” Science, vol. 329, pp. 930--933, 2010. Drude, P., “Zur elektronentheorie der metalle,” Ann. Phys., vol. 1, pp. 566--613, 1900. Devi, I., R. Dalal, Y. Kalra and R. K. Sinha, “Modeling and design of all-dielectric cylindrical nanoantennas,” J. Nanophoton, vol. 10, no. 046011, 2016. de Sousa, N., L. S. Froufe-Perez, J. J. Saenz and A. Garcia-Martin, “Magneto optical activity in high index dielectric nanoantennas,” Sci. Rep., vol. 6, no. 30803, 2016. Evlyukhin, A. B., S. M. Novikov, U. Zywietz, R. L. Eriksen, C. Reinhardt, S. I. Bozhevolnyi and B. N. Chichkov, “Demonstration of magnetic dipole resonances of dielectric nanospheres in the visible region,” Nano. Lett., vol. 12, pp. 3749--3755, 2012. Fu, Y. H., A. I. Kuznetsov, A. E. Miroshnichenko, Y. F. Yu and B. Lukyanchuk, “Directional visible light scattering by silicon nanoparticles,” Nat. Commun., vol. 4, no. 1527, 2013. Filonov, D. S., A. E. Krasnok, A. P. Slobozhanyuk, P. V. Kapitanova, E. A. Nenasheva, Y. S. Kivshar and P. A. Belov, “Experimental verification of the concept of all-dielectric nanoantennas,” Appl. Phys. Lett., vol. 100, no. 201113, 2012. Geffrin, J. M., B. Garcia-Camara, R. Gomez-Medina, P. Albella, L. S. Froufe-Perez, C. Eyraud, A. Litman, R. Vaillon, F. Gonzalez, M. Nieto-Vesperinas, J. J. Vesoerinas and F. Moreno, “Magnetic and electric coherence in forward-and backscattered electromagnetic waves by a single dielectric subwavelength sphere,” Nat. Commun., vol. 3, no. 1171, 2012. Gomez-Medina, R., B. Garcia-Camara, I. Suarez-Lacalle, F. Gonzalez, F. Moreno, M. Nieto-Vesperinas and J. J. Saenz, “Electric and magnetic dipolar response of germanium nanospheres: Interference effects, scattering anisotropy, and optical forces,” J. Nanophotonics, vol. 5, no. 053512, 2011. Harrington, R. F., “The method of moments in electromagnetics,” J. Electromagn. Waves Appl., vol. 1, pp. 181--200, 1987. Kelley, D. F. and R. J. Luebbes, “Piecewise linear recursive convolution for dispersive media using FDTD,” IEEE Trans. Antennas Propagat., vol. 44, pp. 792--797, 1996. Kernighan, B. W. and D. M. Ritchie, The C programming Language, 2nd Edition, Prentice-Hall, 1988. Kreibig, U. and M. Vollmer, Optical Properties of Metal Clusters, Springer-Verlag, Berlin, 1995. Krasnok, A. E., A. E. Miroshnichenko, P. A. Belov and Y. S. Kivshar, “All-dielectric optical nanoantennas,” Opt. Express, vol. 20, pp. 20599--20604, 2012. Krasnok, A. E., C. R. Simovski, P. A. Belov and Y. S. Kivshar, “Superdirective dielectric nanoantennas,” Nanoscale, vol. 6, no. 7354, 2014. Kerker, M., D.-S. Wang and C. L. Giles, “Electromagnetic scattering by magnetic spheres,” J. Opt. Soc. Am., vol. 73, no. 6, pp. 765--767, 1983. Kosako, T., Y. Kadoya and H. F. Hofmann, “Directional control of light by a nano-optical Yagi–Uda antenna,” Nat. Photon., vol. 4, pp. 312--315, 2010. Lorentz, H. A., The theory of Electrons. Leipzig: Teubner, 1906. Liberal, I., I. Ederra, R. Gonzalo and R. W Ziolkowski, “Superbackscattering from single dielectric,” J. Opt., vol. 17, no. 072001 , 2015. Liu, W., J. Zhang, B. Lei, HaotongMa, W. Xie and H. Hu, “Ultra-directional forward scattering by individual core-shell nanoparticles,” OSA, vol. 22, no. 13 , 2014. Lal, S., S. Link and N. J. Halas, “Nano-optics from sensing to waveguiding,” Nat. Photon., vol. 1, pp. 641--648, 2007. Novotny, L. and N. V. Hulst, “Antennas for light,” Nat. Photon., vol. 5, no. 2, pp. 83--90, 2011. Okoniewski, M., M. Mrozowski and M. A. Stuchly, “Simple treatment of multi-term dispersion in FDTD,” IEEE Microwave Guided Wave Lett., vol. 7, pp. 121--123, 1997. Palik, E. D., Handbook of Optical Constants of Solids. London, U.K.: Academic, 1985. Pakizeh, T. and M. Kall, ”Unidirectional ultracompact optical nanoantennas,” Nano Lett., vol. 9, pp. 2343--2349, 2009. Roden, J. A. and S. D. Gedney, “Convolutional PML (CPML): An efficient FDTD implementation of the CFS-PML for arbitrary media,” Microwave Opt. Technol. Lett., vol. 27, pp. 334--339, 2000. Rolly, B., J. M. Geffrin, R. Abdeddaim, B. Stout and N. Bonod, “Controllable emission of a dipolar source coupled with a magnetodielectric resonant subwavelength scatterer,” Sci. Rep., vol. 3, no. 3063, 2013. Reenaa, I. Devia, Y. Kalra and R. K. Sinhaa, “Multipolar optically induced electric and magnetic resonances in the ellipsoidal nanoparticles,” Proc. of SPIE., vol. 9919, no. 99190T, 2016. Schuller, J. A., E. S. Barnard, W. Cai, Y. C. Jun, J. S. White and M. L. Brongersma, “Plasmonics for extreme light concentration and manipulation,” Nat. Mater., vol. 9, no. 3, pp. 193--204, 2010. Sikdar, D., W. Cheng and M. Premaratne, “Optically resonant magneto-electric cubic nanoantennas for ultra-directional light scattering,” J. Appl. Phys., vol. 117, no. 083101, 2015. Taflove, A. and S. Hagness, Computation Electromagnetics: The Finite-Difference Time-Domain Method. Norwood, MA: Artech House, 2005. Tian, J., Q. Li, Y. Yang and M. Qiu, “Tailoring unidirectional angular radiation through multipolar interference in a single-element subwavelength all-dielectric stair-like nanoantenna,” Nanoscale, vol. 8, pp. 4047--4053, 2016. Taminiau, T. H., F. D. Stefani and N. F. van Hulst, “Enhanced directional excitation and emission of single emitters by a nano-optical Yagi-Uda antenna,” OSA, vol. 16, no. 14, 2008. Weiland, T., “A discretization model for the solution of Maxwell's equations for six-component fields,” Electron. Commun. (AEU), vol. 31, pp. 116--120, 1977. Yee, K., “Numerical solution of initial boundary value problems involving Maxwell's equations in isotropic media,” IEEE Trans. Antennas Propaga., vol. 14, pp. 302--307, 1966. Yang, Y., Q. Li and M. Qiu, “Controlling the angular radiation of single emitters using dielectric patch nanoantennas,” Appl. Phys. Lett., vol. 107, no. 031109, 2015. Zienkiewicz, O. C. and Y. K. Cheung, “Finite elements in the solution of field problems,” The Engineer, vol. 220, pp. 507--510, 1965. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/70615 | - |
| dc.description.abstract | 在本論文中,我們利用C程式語言發展了三維有限時域差分法,並且透過訊息傳遞介面協定,開發具有平行化功能以減少數值運算時間。本研究的主要目的是研究正立方體介電質奈米天線的散射特性,以及產生單向散射光的機制。首先,我們計算總散射截面和其輻射圖。然後我們分析了偶極共振的波長和廣義Kerker條件。另外,為了進一步增加散射光的指向性,我們考慮兩個正立方體奈米天線排列在不同方向。儘管可以通過增加奈米天線的間距來增強散射光的指向性,但是散射光的旁波瓣的數量和強度將同時增加。我們還考慮在行進光方向排列的正立方體奈米天線群,由於繞射光柵效應,它可以增強方向性並同時消除不需要的旁波瓣。最後,我們研究了可用於旋轉散射光方向的不對稱奈米天線。由於在不對稱奈米天線中激發的電偶極共振之間的干涉,散射光的方向可以被旋轉到遠離入射波方向的右側或左側方向。 | zh_TW |
| dc.description.abstract | In this thesis, we develop a parallelized three-dimensional (3-D) finite-difference time-domain (FDTD) numerical simulator by using the message passing interface (MPI) library code in C language. The main purpose of this research is to analyze the scattering properties of all-dielectric cubic nano-antennas, and the mechanism to produce unidirectional scattering. First, the total scattering cross-section and the radiation patterns are calculated. Then we analyze the wavelengths of the dipole resonances and the generalized Kerker's condition. Moreover, to further increase the directionality of the scattered light, we consider the double nanocubes. Although the directionality of the scattered light can be enhanced by increasing the gap size between the nanocubes, the number and the intensity of the side lobes will be increased at the same time. We also consider a linear chain of nanocubes aligned in z direction, which can enhance the directionality and eliminate the unwanted side lobes simultaneously due to the diffraction grating effect. Finally, the asymmetric nanoparticles which can be utilized to switch the direction of scattered light are studied in detail. Because of the interference between the electric and magnetic dipole resonances stimulated simultaneously in each of the asymmetric nanoparticles, the direction of scattered light can be tuned to either right or left away from the incident wave direction. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-17T04:32:40Z (GMT). No. of bitstreams: 1 ntu-107-R05941125-1.pdf: 17735083 bytes, checksum: c10b9f82c2a95fd85484106a8dfda04a (MD5) Previous issue date: 2018 | en |
| dc.description.tableofcontents | 1 Introduction 1
1.1 Motivations......................................................................................1 1.2 Introduction to Computational Electromagnetics...................................................3 1.3 Chapter Outline..................................................................................4 2 The Finite-Difference Time-Domain Method...........................................................6 2.1 Introduction.....................................................................................6 2.2 The Courant Stability Limit......................................................................8 2.3 The Total-field/Scattered-field Technique.......................................................10 2.4 Modeling of Dispersive Materials................................................................11 2.4.1 The Drude Model...............................................................................11 2.4.2 The Lorentz Model.............................................................................12 2.4.3 The Auxiliary Differential Equation (ADE) Method..............................................13 2.5 Convolutional Perfectly Matched Layer (CPML)....................................................17 2.6 Periodic Boundary Conditions (PBC)..............................................................20 2.7 The Parallelized FDTD Method....................................................................20 2.8 Validation of FDTD Simulated Results with Some Analytical Solutions.............................21 2.8.1 Phasor Calculation for a 2-D Circular Cylinders...............................................21 2.8.2 Phasor Calculation for a 3-D Silver Sphere....................................................22 2.8.3 Calculation of Total Scattering Cross-Section.................................................23 2.9 Near-to-Far-Field Transformation................................................................24 2.10 Radiation Pattern..............................................................................28 3 Unidirectional Scattered Light of All-Dielectric Cubic Nanoantennas...............................42 3.1 Simulations of All-dielectric Cubic Nanoantennas................................................42 3.2 Generalized Kerker's Condition from a High Refractive Index Dielectric Nanocube.................44 3.3 Comparison between High and Low Relative Permittivities Dielectric Nanocubes....................44 3.4 Comparison of Different Widths of the Dielectric Nanocubes......................................46 3.5 Comparison between Nanocubes and Nanospheres....................................................46 3.6 Simulations of All-dielectric Nanocube Homodimers...............................................47 3.7 Simulations of a Linear Chain of Nanocubes......................................................49 4 Switchable Scattered Light of All-Dielectric Asymmetric Nanostructures............................86 4.1 Simulation of Asymmetric Nanospheres in Different Relative Permittivities.......................86 4.2 Simulation of All-Dielectric Asymmetric Cubic Nanostructures....................................88 4.3 The Scattering Properties of Asymmetric Cubic Nanostructures....................................89 4.4 The Scattering Properties of Different Widths of Asymmetric Nanocubes ..........................90 4.5 The Scattering Properties of Different Relative Permittivities of Asymmetric Nanocubes..........91 4.6 Special Scattering Properties of Asymmetric Nanocubes by Changing Geometrical Dimensions .......94 4.7 Asymmetric Nanocubes with Gaps in x and y directions............................................95 5 Conclusion 136 Bibliography 138 | |
| dc.language.iso | zh-TW | |
| dc.subject | 正立方體介電質奈米天線 | zh_TW |
| dc.subject | 有限時域差分法 | zh_TW |
| dc.subject | 具角度偏轉的散射光 | zh_TW |
| dc.subject | 近場轉遠場法 | zh_TW |
| dc.subject | 高度指向性散射光 | zh_TW |
| dc.subject | Finite-difference time-domain method | en |
| dc.subject | switchable directional scattering. | en |
| dc.subject | enhanced directional scattering | en |
| dc.subject | near-to-far-field transformation | en |
| dc.subject | all-dielectric cubic nano-antennas | en |
| dc.title | 以三維有限時域差分數值模型分析正立方體介電質奈米天線 | zh_TW |
| dc.title | Studies of All-Dielectric Cubic Nano-Antennas Using 3-D Finite Difference Time-Domain Numerical Models | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 106-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 楊宗哲教授,張世慧教授 | |
| dc.subject.keyword | 有限時域差分法,近場轉遠場法,高度指向性散射光,正立方體介電質奈米天線,具角度偏轉的散射光, | zh_TW |
| dc.subject.keyword | Finite-difference time-domain method,near-to-far-field transformation,enhanced directional scattering,all-dielectric cubic nano-antennas,switchable directional scattering., | en |
| dc.relation.page | 143 | |
| dc.identifier.doi | 10.6342/NTU201801266 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2018-08-10 | |
| dc.contributor.author-college | 電機資訊學院 | zh_TW |
| dc.contributor.author-dept | 光電工程學研究所 | zh_TW |
| 顯示於系所單位: | 光電工程學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-107-1.pdf 未授權公開取用 | 17.32 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
