請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/70608完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 趙福杉(Fu-Shan Jaw) | |
| dc.contributor.author | Sheng-Huang Lin | en |
| dc.contributor.author | 林聖皇 | zh_TW |
| dc.date.accessioned | 2021-06-17T04:32:26Z | - |
| dc.date.available | 2018-08-15 | |
| dc.date.copyright | 2018-08-15 | |
| dc.date.issued | 2018 | |
| dc.date.submitted | 2018-08-10 | |
| dc.identifier.citation | References:
1. DeLong M, Georgopoulos A, Motor Functions of the Basal Ganglia, in Comprehensive Physiology. 2011: New York. 2. DeLong MR, Wichmann T, Circuits and circuit disorders of the basal ganglia. Archives of Neurology, 2007. 64(1): p. 20-24. 3. DeLong M, Wichmann T, Changing Views of Basal Ganglia Circuits and Circuit Disorders. Clinical EEG and neuroscience, 2010. 41(2): p. 61-67. 4. Kultas-Ilinsky K, Ilinsky I. Basal Ganglia and Thalamus in Health and Movement Disorders. New York: Springer; 2001 5. Nougaret S, Meffre J, Duclos Y et al First evidence of a hyperdirect prefrontal pathway in the primate: precise organization for new insights on subthalamic nucleus functions. Frontiers in Computational Neuroscience, 2013. 7, 135(1-2) DOI: 10.3389/fncom.2013.00135. 6. Wichmann T, Dostrovsky JO, Pathological basal ganglia activity in movement disorders. Neuroscience, 2011. 198: p. 232-244. 7. Israel Z, Burchiel KJ. Microelectrode Recording in Movement Disorder Surgery. New York; 2005 8. Hariz MI, Hariz G-M, Chapter 6 - Therapeutic stimulation versus ablation, in Handbook of Clinical Neurology, Lozano AM, Hallett M, Editors. 2013, Elsevier: Amsterdam. p. 63-71. 9. Bronstein JM, Tagliati M, Alterman RL et al, Deep brain stimulation for parkinson disease: An expert consensus and review of key issues. Archives of Neurology, 2011. 68(2): p. 165-165. 10. Wichmann T, DeLong MR, Deep Brain Stimulation for Movement Disorders of Basal Ganglia Origin: Restoring Function or Functionality? Neurotherapeutics, 2016. 13(2): p. 264-283. 11. Benabid AL, Pollak P, Louveau A et al, Combined (thalamotomy and stimulation) stereotactic surgery of the VIM thalamic nucleus for bilateral Parkinson disease. Applied neurophysiology, 1987. 50(1-6): p. 344-346. 12. Rezai AR, Kopell BH, Gross RE et al, Deep brain stimulation for Parkinson's disease: Surgical issues. Movement Disorders, 2006. 21(S14): p. S197-S218. 13. Ho AL, Ali R, Connolly ID et al, Awake versus asleep deep brain stimulation for Parkinson’s disease: a critical comparison and meta-analysis. Journal of Neurology, Neurosurgery & Psychiatry, 2018. 89(7): p. 687-691. 14. Hertel F, Züchner M, Weimar I et al Implantation of electrodes for deep brain stimulation of the subthalamic nucleus in advanced Parkinson's disease with the aid of intraoperative microrecording under general anesthesia. Neurosurgery, 2006. 59, E1138(1-8) DOI: 10.1227/01.NEU.0000245603.77075.55. 15. Bindu B, Bithal P, Anaesthesia and deep brain stimulation. Journal of Neuroanaesthesiology and Critical Care, 2016. 3(3): p. 197-204. 16. [Anonymous], !!! INVALID CITATION !!! [13,14,16]. 17. Hutchison WD, Lang AE, Dostrovsky JO et al, Pallidal neuronal activity: implications for models of dystonia. Annals of neurology, 2003. 53(4): p. 480-488. 18. Krause M, Fogel W, Kloss M et al, Pallidal stimulation for dystonia. Neurosurgery, 2004. 55(6): p. 1361-1370. 19. Grant R, Gruenbaum SE, Gerrard J, Anaesthesia for deep brain stimulation: a review. Current opinion in anaesthesiology, 2015. 28(5): p. 505-510. 20. Fluchere F, Witjas T, Eusebio A et al, Controlled general anaesthesia for subthalamic nucleus stimulation in Parkinson's disease. Journal of Neurology, Neurosurgery & Psychiatry, 2014. 85(10): p. 1167-1173. 21. Harries AM, Kausar J, Roberts SAG et al, Deep brain stimulation of the subthalamic nucleus for advanced Parkinson disease using general anesthesia: long-term results. 2012. 116(1): p. 107-113. 22. Lin S-H, Chen T-Y, Lin S-Z et al, Subthalamic deep brain stimulation after anesthetic inhalation in Parkinson disease: a preliminary study. 2008. 109(2): p. 238-244. 23. Tsai S-T, Chuang W-Y, Kuo C-C et al, Dorsolateral subthalamic neuronal activity enhanced by median nerve stimulation characterizes Parkinson’s disease during deep brain stimulation with general anesthesia. Journal of neurosurgery, 2015. 123(6): p. 1394-1400. 24. Chen S-Y, Lee C-C, Lin S-H et al, Microelectrode recording can be a good adjunct in magnetic resonance image-directed subthalamic nucleus deep brain stimulation for parkinsonism. Surgical neurology, 2006. 65(3): p. 253-260- discussion 260-251. 25. Buzsaki G, Large-scale recording of neuronal ensembles. Nat Neurosci, 2004. 7(5): p. 446-451. 26. Moffitt MA, McIntyre CC, Model-based analysis of cortical recording with silicon microelectrodes. Clinical Neurophysiology, 2005. 116(9): p. 2240-2250. 27. Dolan K, Martens HCF, Schuurman PR et al, Automatic noise-level detection for extra-cellular micro-electrode recordings. Medical & Biological Engineering & Computing, 2009. 47(7): p. 791-800. 28. Bingmer M, Schiemann J, Roeper J et al, Measuring burstiness and regularity in oscillatory spike trains. Journal of Neuroscience Methods, 2011. 201(2): p. 426-437. 29. Favre J, Taha JM, Baumann T et al, Computer analysis of the tonic, phasic, and kinesthetic activity of pallidal discharges in Parkinson patients. Surgical neurology, 1999. 51(6): p. 665-672- discussion 672-663. 30. Tsai S-T, Kuo C-C, Chen T-Y et al, Neurophysiological comparisons of subthalamic deep-brain stimulation for Parkinson's disease between patients receiving general and local anesthesia. Tzu Chi Medical Journal, 2016. 28(2): p. 63-67. 31. Donoho DL, Johnstone IM, Ideal Spatial Adaptation by Wavelet Shrinkage. Biometrika, 1994. 81(3): p. 425-455. 32. Rodriguez-Oroz MC, Rodriguez M, Guridi J et al, The subthalamic nucleus in Parkinson's disease: somatotopic organization and physiological characteristics. Brain, 2001. 124(9): p. 1777-1790. 33. Quiroga RQ, Nadasdy Z, Ben-Shaul Y, Unsupervised spike detection and sorting with wavelets and superparamagnetic clustering. Neural computation, 2004. 16(8): p. 1661-1687. 34. Hsin-Yi L, You-Yin C, Sheng-Huang L et al Automatic spike sorting for extracellular electrophysiological recording using unsupervised single linkage clustering based on grey relational analysis. Journal of Neural Engineering, 2011. 8, 036003(1-15). 35. Aviles-Olmos I, Kefalopoulou Z, Tripoliti E et al, Long-term outcome of subthalamic nucleus deep brain stimulation for Parkinson's disease using an MRI-guided and MRI-verified approach. Journal of Neurology, Neurosurgery & Psychiatry, 2014. 85(12): p. 1419-1425. 36. Burchiel KJ, McCartney S, Lee A et al, Accuracy of deep brain stimulation electrode placement using intraoperative computed tomography without microelectrode recording. 2013. 119(2): p. 301-306. 37. Foltynie T, Zrinzo L, Martinez-Torres I et al, MRI-guided STN DBS in Parkinson's disease without microelectrode recording: efficacy and safety. Journal of Neurology, Neurosurgery & Psychiatry, 2011. 82(4): p. 358-363. 38. Patel NK, Plaha P, O'Sullivan K et al, MRI directed bilateral stimulation of the subthalamic nucleus in patients with Parkinson's disease. Journal of Neurology, Neurosurgery & Psychiatry, 2003. 74(12): p. 1631-1637. 39. Braun M, Winkler D, Wehner M et al, Deep brain stimulation and general anesthesia. Basal Ganglia, 2011. 1(2): p. 79-82. 40. Lettieri C, Rinaldo S, Devigili G et al, Deep brain stimulation: Subthalamic nucleus electrophysiological activity in awake and anesthetized patients. Clinical Neurophysiology, 2012. 123(12): p. 2406-2413. 41. Lefaucheur J-P, Gurruchaga J-M, Pollin B et al, Outcome of bilateral subthalamic nucleus stimulation in the treatment of Parkinson's disease: correlation with intra-operative multi-unit recordings but not with the type of anaesthesia. European Neurology, 2008. 60(4): p. 186-199. 42. Maciver MB, Bronte-Stewart HM, Henderson JM et al, Human subthalamic neuron spiking exhibits subtle responses to sedatives. Anesthesiology, 2011. 115(2): p. 254-264. 43. Sanghera MK, Grossman RG, Kalhorn CG, Basal ganglia neuronal discharge in primary and secondary dystonia in patients undergoing pallidotomy. Neurosurgery, 2003. 52(6): p. 1358-1373. 44. Bour LJ, Contarino MF, Foncke EMJ et al, Long-term experience with intraoperative microrecording during DBS neurosurgery in STN and GPi. Acta Neurochirurgica, 2010. 152(12): p. 2069-2077. 45. Hutchison WD, Allan RJ, Opitz H et al, Neurophysiological identification of the subthalamic nucleus in surgery for Parkinson's disease. Annals of Neurology, 1998. 44(4): p. 622-628. 46. Steigerwald F, Pötter M, Herzog J et al, Neuronal Activity of the Human Subthalamic Nucleus in the Parkinsonian and Nonparkinsonian State. Journal of Neurophysiology, 2008. 100(5): p. 2515-2524. 47. Lobb CJ, Abnormal Bursting as a Pathophysiological Mechanism in Parkinson's Disease. Basal ganglia, 2014. 3(4): p. 187-195. 48. Moll CKE, Galindo-Leon E, Sharott A et al Asymmetric pallidal neuronal activity in patients with cervical dystonia. Frontiers in Systems Neuroscience, 2014. 8, 15(1-22). 49. Lee W-W, Ehm G, Yang H-J et al Bilateral Deep Brain Stimulation of the Subthalamic Nucleus under Sedation with Propofol and Fentanyl. PLoS ONE, 2016. 11, e0152619(1-12) DOI: 10.1371/journal.pone.0152619. 50. Moll CKE, Payer S, Gulberti A et al, STN stimulation in general anaesthesia: evidence beyond 'evidence-based medicine'. Acta neurochirurgica Supplement, 2013. 117: p. 19-25. 51. Brown EN, Lydic R, Schiff ND, General Anesthesia, Sleep, and Coma. The New England journal of medicine, 2010. 363(27): p. 2638-2650. 52. Purdon PL, Pierce ET, Mukamel EA et al, Electroencephalogram signatures of loss and recovery of consciousness from propofol. Proceedings of the National Academy of Sciences of the United States of America, 2013. 110(12): p. E1142-E1151. 53. Akeju O, Westover MB, Pavone KJ et al, Effects of Sevoflurane and Propofol on Frontal Electroencephalogram Power and Coherence. Anesthesiology, 2014. 121(5): p. 990-998. 54. Plenz D, Kital ST, A basal ganglia pacemaker formed by the subthalamic nucleus and external globus pallidus. Nature, 1999. 400(6745): p. 677-682. 55. Murta T, Leite M, Carmichael DW et al, Electrophysiological correlates of the BOLD signal for EEG-informed fMRI. Human brain mapping, 2015. 36(1): p. 391-414. 56. Kuroda Y, Murakami M, Tsuruta J et al, Preservation of the ratio of cerebral blood flow metabolic rate for oxygen during prolonged anesthesia with isoflurane, sevoflurane, and halothane in humans. Anesthesiology, 1996. 84(3): p. 555-561. 57. Kitaguchi K, Ohsumi H, Kuro M et al, Effects of sevoflurane on cerebral circulation and metabolism in patients with ischemic cerebrovascular disease. Anesthesiology, 1993. 79(4): p. 704-709. 58. Hemmings HC, Sodium channels and the synaptic mechanisms of inhaled anaesthetics. British journal of anaesthesia, 2009. 103(1): p. 61-69. 59. Holt GR, Koch C, Electrical interactions via the extracellular potential near cell bodies. Journal of computational neuroscience, 1999. 6(2): p. 169-184. 60. Krishna V, Elias G, Sammartino F et al, The effect of dexmedetomidine on the firing properties of STN neurons in Parkinson's disease. European Journal of Neuroscience, 2015. 42(4): p. 2070-2077. 61. Park E, Heo MS, Lim YH et al, The effects of different anesthetic methods on neuronal activity and movement symptoms of Parkinson’s disease. International Journal of Precision Engineering and Manufacturing, 2015. 16(3): p. 573-579. 62. Herold K, Hemmings H Sodium Channels as Targets for Volatile Anesthetics. Frontiers in Pharmacology, 2012. 3, 50(1-7). 63. Kim W, Song IH, Lim YH et al, Influence of Propofol and Fentanyl on Deep Brain Stimulation of the Subthalamic Nucleus. Journal of Korean Medical Science, 2014. 29(9): p. 1278-1286. 64. OuYang W, Herold KF, Hemmings HC, Comparative Effects of Halogenated Inhaled Anesthetics on Voltage-gated Na(+) Channel Function. Anesthesiology, 2009. 110(3): p. 582-590. 65. Vidailhet M, Jutras M-F, Roze E et al, Chapter 14 - Deep brain stimulation for dystonia, in Handbook of Clinical Neurology, Lozano AM, Hallett M, Editors. 2013, Elsevier: Amsterdam. p. 167-187. 66. Merello M, Cerquetti D, Cammarota A et al, Neuronal globus pallidus activity in patients with generalised dystonia. Movement Disorders, 2003. 19(5): p. 548-554. 67. Starr PA, Turner RS, Rau G et al, Microelectrode-guided implantation of deep brain stimulators into the globus pallidus internus for dystonia: techniques, electrode locations, and outcomes. Journal of Neurosurgery, 2006. 104(4): p. 488-501. 68. Lenz F, Suarez I, Verhagen Metman L et al, Pallidal activity during dystonia: Somatosensory reorganisation and changes with severity. Journal of Neurology, Neurosurgery & Psychiatry, 1998. 65(5): p. 767-770. 69. Vitek JL, Bakay RAE, Hashimoto T et al, Microelectrode-guided pallidotomy: technical approach and its application in medically intractable Parkinson's disease. Journal of Neurosurgery, 1998. 88(6): p. 1027-1043. 70. Lozano A, Hutchison W, Kiss Z et al, Methods for microelectrode-guided posteroventral pallidotomy. Journal of Neurosurgery, 1996. 84(2): p. 194-202. 71. Lozano AM, Hutchison WD, Microelectrode recordings in the pallidum. Movement disorders : official journal of the Movement Disorder Society, 2002. 17 Suppl 3: p. S150-154. 72. Ahmed Z, Asi YT, Sailer A et al, The neuropathology, pathophysiology and genetics of multiple system atrophy. Neuropathology and Applied Neurobiology, 2011. 38(1): p. 4-24. 73. Fanciulli A, Wenning GK, Multiple-System Atrophy. New England Journal of Medicine, 2015. 372(3): p. 249-263. 74. Chou KL, Forman MS, Trojanowski JQ et al, Subthalamic nucleus deep brain stimulation in a patient with levodopa-responsive multiple system atrophy. Journal of Neurosurgery, 2004. 100(3): p. 553-556. 75. Lezcano E, Gómez-Esteban Juan C, Zarranz Juan J et al, Parkinson's disease-like presentation of multiple system atrophy with poor response to STN stimulation: A clinicopathological case report. Movement Disorders, 2004. 19(8): p. 973-977. 76. Ullman M, Vedam-Mai V, Resnick AS et al, Deep brain stimulation response in pathologically confirmed cases of multiple system atrophy. Parkinsonism & Related Disorders, 2012. 18(1): p. 86-88. 77. Meissner WG, Laurencin C, Tranchant C et al, Outcome of deep brain stimulation in slowly progressive multiple system atrophy: A clinico-pathological series and review of the literature. Parkinsonism & Related Disorders, 2016. 24: p. 69-75. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/70608 | - |
| dc.description.abstract | 對於無法忍受清醒深部腦刺激手術的巴金森及動作障礙患者,於全麻狀態下進行手術是一種選擇。然而我們並不瞭解麻醉劑對視丘下核(subthalamic nucleus)及蒼白球內側(internal globus pallidus)的深部腦刺激手術術中微電位記錄(microelectrode recording)的作用及影響。如果能夠了解麻醉劑對於這些腦區神經元活動的作用及影響,將使我們於全麻狀態下進行的深部腦刺激手術定位及相關核區辨認有莫大助益。於此論文中,我們會有三個主題探討: 第一是有關於desflurane 氣體麻醉劑對於視丘下核微電位紀錄的探討。我們回溯性的選取於連續19位巴金森患者於花蓮慈濟醫院接受雙側視丘下核深部腦刺激手術。其中有10位接受desflurane氣體麻醉,另外9位接受局部麻醉於清醒狀態下手術。我們分析比較兩組(全麻和局麻)術中微電位記錄,使用了傳統的單一神經元放電分析(spike analysis),Hilbert transform神經訊號能量分析,另外加上結合自相關及頻譜分析以了解神經元放電型態及震盪波動。我們的分析結果顯示兩組其叢發指標(burst index)兩組相似,代表兩組神經元放電皆維持相似程度的振發特性。神經訊號能量分析顯示,於全麻狀態下視丘下核神經元放電能量明顯降低,顯示麻醉劑對神經元放電有抑制效果。自相關的頻譜分析則發現麻醉劑讓視丘下核神經元放電於4-8Hz震盪波動大幅增加。基於以上的分析及結果,我們可以做出以下結論 : desflurane麻醉劑讓巴金森病患視丘下核神經元能量訊號減弱但是其叢發特性沒有改變。於全麻下,視丘下核神經元放電低頻(4-8Hz)震盪的增強,可以視為desflurane對視丘下核神經元的影響特徵。第二是關於在desflurane全身麻醉下,探討巴金森及肌張力不全病患的蒼白球內側術中微電位紀錄表現。我們發現1)巴金森病患的蒼白球(內側及外側)神經元放電頻率高於肌張力不全患者。2)蒼白球外側放電頻率皆低於蒼白球內側。3)明顯神經元低頻震盪特性可見於這兩類病患的蒼白球內側及巴金森病患的蒼白球外側。經由這些蒼白球術中微電位紀錄特性,我們可以在全麻的狀況下,經由術中微電位紀錄,精準的定位,成功完成蒼白球內側深部腦刺激手術。第三是探討非典型巴金森病患(多系統退化症)其視丘下核術中微電位紀錄表現。雖然病患及神經元紀錄不多,我們仍可以明顯看出其視丘下核放電頻率很小(10Hz)且有明顯低頻震盪特性。這些發現可以顯示多系統退化症其神經退化較為廣泛,可能包含視丘下核本身。因此視丘下核深部腦刺激手術對於多系統退化症之效果不佳。總結而言,在全麻狀況下,視丘下核及蒼白球內側術中微電位紀錄是可行且具有定位價值。除了刺激電極置放的準確性外,篩選出合適之病患(如巴金森氏症及肌張力不全症)也是深部腦刺激手術治療的成功關鍵。 | zh_TW |
| dc.description.abstract | Patients with Parkinson’s disease (PD) or other movement disorders who are unable to tolerate awake deep brain stimulation (DBS) surgery, operation under general anesthesia (GA) is the only choice. The effect of anesthetics on intraoperative microelectrode recording (MER) remains controversial. Understanding the effect of anesthetics on MER is important in performing DBS surgery with GA. In the dissertation, three topics will be explored to understand the change of intraoperative MER in GA. First, we retrospectively performed qualitative and quantitative analysis of subthalamic nucleus (STN) MER in GA and local anesthesia (LA). 19 consecutive PD patients who received bilateral STN DBS surgery in Hualien Tzu-Chi hospital under either desflurane GA (n=10) or LA (n=9). We used spike sorting to perform frequency and modified burst index [MBI], STN firing pattern characteristics were determined using a combined approach based on the autocorrelograms and power spectral analysis, which was employed to investigate differences in the oscillatory activities between the groups. Additionally, the Hilbert transform to obtain signal power measurements for background and spikes. The results revealed burst firing was observed in both groups. The firing frequencies were greater in the LA group and MBI was comparable in both groups. Both the background and spikes were of significantly greater power in the LA group. The power spectra of the autocorrelograms were significantly higher in the GA group between 4 and 8 Hz. Under controlled light desflurane GA, burst features of the neuronal firing patterns are preserved in the STN, but power is reduced. Enhanced low-frequency (4-8 Hz) oscillations in the MERs for the GA group could be a characteristic signature of desflurane’s effect on neurons in the STN. Second, intraoperative MER of internal and external globus pallidus (GPi and GPe) in PD and dystonia patients under desflurane anesthesia had been investigated. The results showed 1) the firing frequency of GPi and GPe in PD patients was higher than dystonia patients. 2) The firing rate of GPe neurons was lower than GPi neurons in PD and dystonia patients. 3) prominent low frequency oscillation had been observed in GPi of both patients and GPe in PD patients. The three marks of MER in globus pallidus will ensure the MER accurate location during DBS surgery in PD and dystonia patients. Third, few MERs of multiple system atrophy (MSA) had been analysed. Slow firing rate (10 Hz) and prominent low frequency oscillation were noted. This results may suggest wider degeneration of MSA including STN compared PD and dystonia. In conclusion, intraoperative MER is feasible and provides useful localization information in controlled desflurane anesthesia. Patient selection with suitable diseases (PD and dystonia but not MSA) is another key step to perform successful DBS operation. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-17T04:32:26Z (GMT). No. of bitstreams: 1 ntu-107-D98548006-1.pdf: 3022874 bytes, checksum: 00b4898fb21b34ea748ff6c02dd5236f (MD5) Previous issue date: 2018 | en |
| dc.description.tableofcontents | Contents
致謝 I List of Abbreviations II 中文摘要 IV Abstract VI Contents VIII List of Figures XI List of Tables XIII Chapter 1 Introduction 1 1.1 The basal ganglia and motor circuits 1 1.2 Circuit Disorders of the basal ganglia: Parkinson’s disease and movement disorders 3 1.3 Functional neurosurgery and circuit disorders in basal ganglia 7 1.4 Functional neurosurgery and intraoperative MER 11 1.5 Intraoperative MER and anesthesia 14 Chapter 2 The materials and methods 17 2.1 DBS patients with intraoperative MER data base 17 2.2 Surgical procedure 18 2.2.1 Imaging and targeting 18 2.2.2 Stereotactic procedure 19 2.3 The anesthesia 20 2.3.1 General anesthesia (controlled light inhalation anesthesia) 20 2.3.2 Local anesthesia 20 2.4 The microelectrode recording 21 2.5 The analysis methods of MER 23 2.5.1Estimation for root-mean squared values of Hilbert transformed MER spike and background 23 2.5.2 Extraction of spike timing features 25 2.6 Statistical analysis 28 Chapter 3 The anesthesia (light desflurane inhalation anesthesia) effect on STN MER in PD patients 29 3.1 The demographic, clinical information of patients 29 3.2 Comparisons of clinical outcomes: LA vs. GA 30 3.3 MER Comparisons: LA vs. GA 32 3.3.1 Spike analysis in GA 32 3.3.2 Spike analysis in LA group 35 3.3.3 Power spectral analysis in GA and LA 37 3.3.4 Comparison in background power, spike power, burst index and firing rate between GA and LA 39 3.4 Discussion 40 3.5 Conclusion 47 Chapter 4 The MER of globus pallidus in PD and dystonia 48 4.1 Patients, demographic data, clinical outcome 48 4.2 The length of MER trajectory in GPe and GPi and encountered neurons 51 4.3 The globus pallidus MER in dystonic patients 53 4.4 The globus pallidus MER analysis in PD patients 57 4.5 Discussion 61 4.6 Conclusion 68 Chapter 5 The MER of STN in atypical parkinsonism 69 5.1 The demographical, clinical data in MSA patients 69 5.2 STN MER analysis in MSA patients 70 5.3 Discussion 73 5.4 Conclusion 76 References: 77 Appendix I 83 Appendix II 84 | |
| dc.language.iso | en | |
| dc.subject | 全麻 | zh_TW |
| dc.subject | 巴金森氏症 | zh_TW |
| dc.subject | 肌張力不全症 | zh_TW |
| dc.subject | 深部腦刺激 | zh_TW |
| dc.subject | 微電位紀錄 | zh_TW |
| dc.subject | 視丘下核 | zh_TW |
| dc.subject | 蒼白球 | zh_TW |
| dc.subject | Parkinson’s disease | en |
| dc.subject | globus pallidus | en |
| dc.subject | dystonia | en |
| dc.subject | general anesthesia | en |
| dc.subject | microelelctrode recording | en |
| dc.subject | deep brain stimulation | en |
| dc.subject | subthalamic nucleus | en |
| dc.title | 於全麻狀態下巴金森暨其他動作障礙疾病之基底核電生理研究 | zh_TW |
| dc.title | Electrophysiology of basal ganglia in Parkinson’s disease and other movement disorders under general anesthesia | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 106-2 | |
| dc.description.degree | 博士 | |
| dc.contributor.oralexamcommittee | 謝建興(Jiann-Shing Shieh),黃基礎(Ji-Chuu Hwang),陳新源(Shin-Yuan Chen),陳右穎(You-Yin Chen) | |
| dc.subject.keyword | 巴金森氏症,肌張力不全症,深部腦刺激,微電位紀錄,全麻,視丘下核,蒼白球, | zh_TW |
| dc.subject.keyword | Parkinson’s disease,dystonia,deep brain stimulation,microelelctrode recording,general anesthesia,subthalamic nucleus,globus pallidus, | en |
| dc.relation.page | 85 | |
| dc.identifier.doi | 10.6342/NTU201802510 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2018-08-12 | |
| dc.contributor.author-college | 工學院 | zh_TW |
| dc.contributor.author-dept | 醫學工程學研究所 | zh_TW |
| 顯示於系所單位: | 醫學工程學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-107-1.pdf 未授權公開取用 | 2.95 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
