請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/70605完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 謝宏昀(Hung-Yun Hsieh) | |
| dc.contributor.author | Wei-Fang Pan | en |
| dc.contributor.author | 潘維方 | zh_TW |
| dc.date.accessioned | 2021-06-17T04:32:21Z | - |
| dc.date.available | 2023-09-01 | |
| dc.date.copyright | 2020-09-23 | |
| dc.date.issued | 2020 | |
| dc.date.submitted | 2020-08-28 | |
| dc.identifier.citation | [1] C. Ouanteur, L. Bouallouche-Medjkoune, and D. A¨ıssani, “An Enhanced Analytical Model and Performance Evaluation of the IEEE 802.15.4e TSCH CA,” Wireless Personal Communications, vol. 96, pp. 1355–1376, Sep 2017. [2] L. Bassi, “Industry 4.0: Hope, hype or revolution?,” in 2017 IEEE 3rd International Forum on Research and Technologies for Society and Industry (RTSI), pp. 1–6, 2017. [3] “IEEE Standard for Local and metropolitan area networks–Part 15.4: Low-Rate Wireless Personal Area Networks (LR-WPANs) Amendment 1: MAC sublayer,” IEEE Std 802.15.4e-2012 (Amendment to IEEE Std 802.15.4-2011), pp. 1–225, 2012. [4] I. Hosni, F. Tholeyre, and N. Hamdi, “Localized scheduling for end-to-end delay constrained low power lossy networks with 6tisch,” in 2016 IEEE Symposium on Computers and Communication (ISCC), pp. 507–512, June 2016. [5] M. R. Palattella, N. Accettura, M. Dohler, L. A. Grieco, and G. Boggia, “Traffic Aware Scheduling Algorithm for reliable low-power multi-hop IEEE 802.15.4e networks,” in 2012 IEEE 23rd International Symposium on Per-sonal, Indoor and Mobile Radio Communications - (PIMRC), pp. 327–332, 2012. [6] Y. Jin, P. Kulkarni, J. Wilcox, and M. Sooriyabandara, “A centralized scheduling algorithm for IEEE 802.15.4e TSCH based industrial low power wireless networks,” in 2016 IEEE Wireless Communications and Networking Conference, pp. 1–6, April 2016. [7] S. Chen, T. Sun, J. Yuan, X. Geng, C. Li, S. Ullah, and M. A. Alnuem, “Performance Analysis of IEEE 802.15.4e time slotted channel hopping for low-rate wireless networks,” KSII Transactions on Internet and Information Systems, vol. 7, pp. 1–21, Nov 2013. [8] A. Osseiran, F. Boccardi, V. Braun, K. Kusume, P. Marsch, M. Maternia,O.Queseth, M. Schellmann, H. Schotten, H. Taoka, H. Tullberg, M. A. Uusi-talo, B. Timus, and M. Fallgren, “Scenarios for 5g mobile and wireless commu-nications: the vision of the metis project,” IEEE Communications Magazine, vol. 52, pp. 26–35, May 2014. [9] Wun-Cheol Jeong and Junhee Lee, “Performance evaluation of IEEE 802.15.4e DSME MAC protocol for wireless sensor networks,” in 2012 The First IEEE Workshop on Enabling Technologies for Smartphone and Internet of Things (ETSIoT), pp. 7–12, 2012. [10] M. Anwar and Y. Xia, “TDMA based IEEE 802.15.4 for simple/secured low latency deterministic networked control systems,” in 2015 34th Chinese Control Conference (CCC), pp. 6624–6629, 2015. [11] X. Cao, J. Chen, Y. Cheng, X. S. Shen, and Y. Sun, “An Analytical MAC Model for IEEE 802.15.4 Enabled Wireless Networks With Periodic Traffic,” IEEE Transactions on Wireless Communications, vol. 14, no. 10, pp. 5261–5273, 2015. [12] P. Dutta and D. Culler, “Epic: An open mote platform for application-driven design,” in 2008 International Conference on Information Processing in Sensor Networks (ipsn 2008), pp. 547–548, 2008. [13] C. Adjih, E. Baccelli, E. Fleury, G. Harter, N. Mitton, T. Noel, R. PissardGibollet, F. Saint-Marcel, G. Schreiner, J. Vandaele, and T. Watteyne, “Fit iot-lab: A large scale open experimental iot testbed,” in 2015 IEEE 2nd World Forum on Internet of Things (WF-IoT), pp. 459–464, 2015. [14] Y. Tanaka, K. Brun-Laguna, and T. Watteyne, “Demo: Simulating a 6tisch network using connectivity traces from testbeds,” in IEEE INFOCOM 2019 IEEE Conference on Computer Communications Workshops (INFOCOM WKSHPS), pp. 921–922, 2019. [15] D. Vasiljevi and G. Gardaevi, “Performance evaluation of openwsn operating system on open mote platform for industrial iot applications,” in 2016 International Symposium on Industrial Electronics (INDEL), pp. 1–6, Nov 2016. [16] J. D. R. Nepomuceno and N. M. C. Tiglao, “Performance evaluation of 6TiSCH for resilient data transport in wireless sensor networks,” in 2017 International Conference on Information Networking (ICOIN), pp. 552–557, Jan 2017. [17] A. Varghese and D. Tandur, “Wireless requirements and challenges in industry 4.0,” in 2014 International Conference on Contemporary Computing and Informatics (IC3I), pp. 634–638, Nov 2014. [18] H. Chen and L. Cui, “DS-MMAC: A delay-sensitive multi-channel MAC protocol for Ambient Assistant Living systems,” China Communications, vol. 13, pp. 38–46, May 2016. [19] D. De Guglielmo, B. Al Nahas, S. Duquennoy, T. Voigt, and G. Anastasi, “Analysis and Experimental Evaluation of IEEE 802.15.4e TSCH CSMA-CA Algorithm,” IEEE Transactions on Vehicular Technology, vol. 66, no. 2, pp. 1573–1588, 2017. [20] S. B. Yaala, F. Tholeyre, and R. Bouallegue, “Performance Modeling of IEEE 802.15.4-TSCH with Shared Access and ON-OFF traffic,” in 2018 14th Inter-national Wireless Communications Mobile Computing Conference (IWCMC), pp. 352–357, 2018. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/70605 | - |
| dc.description.abstract | IEEE 802.15.4e TSCH主要特色有兩個,包括時槽和通道偏移。TSCH模式下最小單位是一個鏈接(單元),節點可以使用鏈接主要有兩種模式,即專用鏈接和共享鏈接。關於專用鏈接,大多數文章用於討論排程相關的問題。而在有關共享鏈接的相關論文中,大多數文章討論模型組成並分析數學分析。然而我們發現專用鏈接和共享鏈接都無法達到工業4.0所希望達到的最佳延遲,除此之外也沒有論文討論同時考慮共享鏈接和專用鏈接的混合數學分析。我們在這篇論文中探討如何建立分析模型以評估TSCH在共享和專用單元中的性能。我們提出了一種建構馬可夫模型的新方法。首先,我們在馬可夫模型中添加了專用鏈接的概念。另外,我們需要在原始馬可夫模型中添加一個睡眠模式,因為在專用鏈接中,通道只能提供一個節點進行傳輸,而其他節點要進入睡眠。將這兩種傳輸模式添加到馬可夫中,使得模型從二維模型轉換成三維模型。經過實驗測試後,我們發現使用共享鏈接替換部分專用鏈接能夠有效減少延遲。但是共享鏈接持續上升不會使得延遲持續的下降。共享鏈接的過量增加將增加碰撞發生機率進而導致更多延遲。我們還發現,具有最低延遲的鏈接分配方式比起全部使用專用鏈接的分配提高20%延遲時間。我們也設計了一種演算法,為了方便我們能更快速找到最佳的延遲分配方案。我們提出二進制搜索演算法。此演算法能幫助我們有效且快速的找到最佳解決方案,而且比起完整搜索演算法快上14.3倍。 | zh_TW |
| dc.description.abstract | The IEEE has issued an amendment to 802.15.4e. In TSCH mode, the smallest unit under the TSCH specification is a cell, which includes a slot and channel offset. There are two main modes on the cell that can be used by the node, namely dedicated cell and shared cell. Regarding dedicated cells, most articles are used to discuss scheduling. In the related papers on shared cells, most of the articles will discuss and analyze the mathematical analysis. But we found that neither dedicated cells nor shared cells can achieve the best delay. Also, none of the papers discusses the mathematical analysis that simultaneously considers a mixture of shared and dedicated cells. We probe into the measure of how to build an analytical model to evaluate the performance of TSCH in both shared and dedicated cells. We proposed a novel method to construct Markov chain model. First, we added the concept of dedicated cell into the Markov model. Also, we need to add a sleep mode to the original model because in the dedicated cell, the channel can only provide one node for transmission. These two transmission modes are added to the state to turn the original Markov 2-dimensional model into a 3-dimensional model. After experimental testing, We found that replacing all the allocations using dedicated cells with shared cells one by one will reduce latency. However, increasing the shared cells continuously will not always reduce the delay. Too much increase in shared cell will increase the delay due to collision. We also found that the cell allocation with the lowest latency will be a 20\% improvement over the allocation of dedicated cells. Then we designed an algorithm for finding the best solution of delay to find the lowest value faster. In order to find the cell allocation required when the lowest delay occurs, we use the binary search algorithm. Binary search can find the best solution, which is 14.3 times faster than the full search algorithm. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-17T04:32:21Z (GMT). No. of bitstreams: 1 U0001-2708202018091000.pdf: 4825138 bytes, checksum: 26753b4660a505536ed4246e842c953a (MD5) Previous issue date: 2020 | en |
| dc.description.tableofcontents | ABSTRACT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ii CHAPTER 1 INTRODUCTION . . . . . . . . . . . . . . . . . . . . 1 CHAPTER 2 BACKGROUND AND RELATED WORK . . . . . 4 2.1 Industry 4.0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 2.2 802.15.4e . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 2.2.1 DSME . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 2.2.2 LLDN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 2.2.3 TSCH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 2.2.4 TSCH CSMA/CA algorithm . . . . . . . . . . . . . . . . . 9 2.2.5 6TiSCH simulator . . . . . . . . . . . . . . . . . . . . . . . 11 2.3 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 2.3.1 Research on dedicated cells in TSCH . . . . . . . . . . . . 14 2.3.2 Research on shared cells in TSCH . . . . . . . . . . . . . . 16 2.4 Analytical Model of TSCH CSMA-CA . . . . . . . . . . . . . . . . 17 CHAPTER 3 ANALYTICAL MODEL . . . . . . . . . . . . . . . . 21 3.1 Discrete Time Markov Chain Model . . . . . . . . . . . . . . . . . 21 3.2 Transition Probabilities . . . . . . . . . . . . . . . . . . . . . . . . 24 3.2.1 Cell probability . . . . . . . . . . . . . . . . . . . . . . . . 25 3.2.2 Idle stage . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 3.2.3 Transmit in dedicated cell . . . . . . . . . . . . . . . . . . 28 3.2.4 Transmit in shared cell . . . . . . . . . . . . . . . . . . . . 28 3.2.5 Back-o_ stage . . . . . . . . . . . . . . . . . . . . . . . . . 29 3.3 System Equations . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 3.4 Solving System of Equations . . . . . . . . . . . . . . . . . . . . . 33 3.4.1 Simultaneous equations . . . . . . . . . . . . . . . . . . . . 33 3.4.2 Newtons methods . . . . . . . . . . . . . . . . . . . . . . . 34 3.5 Delay and Reliability Analysis . . . . . . . . . . . . . . . . . . . . 35 3.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 CHAPTER 4 PERFORMANCE EVALUATION . . . . . . . . . . 41 4.1 Model validation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 4.2 Comparison for Varying Number of Retry Times . . . . . . . . . . 44 4.2.1 Comparison for varying number of nodes . . . . . . . . . . 46 4.2.2 Comparison for varying number of tra_c arrival rate . . . . 51 4.2.3 Comparison in low packet deliver ratio . . . . . . . . . . . 54 4.3 E_ective Search for the Delay Optimal Solution . . . . . . . . . . . 57 4.3.1 Search for one network size . . . . . . . . . . . . . . . . . . 57 4.3.2 Search for multiple network sizes . . . . . . . . . . . . . . . 60 CHAPTER 5 CONCLUSION AND FUTURE WORK . . . . . . 62 REFERENCES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63 | |
| dc.language.iso | en | |
| dc.subject | 馬可夫模型 | zh_TW |
| dc.subject | TSCH | en |
| dc.title | IEEE 802.15.4e分時跳頻下結合專用與共享鏈接之馬可夫模型與分析 | zh_TW |
| dc.title | Modeling and Analysis of Dedicated and Shared Links in IEEE 802.15.4e Time-Slotted Channel Hopping for Industrial IoT Networks | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 108-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 李佳翰(Chia-Han Li),高榮鴻(Rung-Hung Gau),王志宇(Chih-Yu Wang) | |
| dc.subject.keyword | 馬可夫模型, | zh_TW |
| dc.subject.keyword | TSCH, | en |
| dc.relation.page | 64 | |
| dc.identifier.doi | 10.6342/NTU202004181 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2020-08-28 | |
| dc.contributor.author-college | 電機資訊學院 | zh_TW |
| dc.contributor.author-dept | 電信工程學研究所 | zh_TW |
| 顯示於系所單位: | 電信工程學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| U0001-2708202018091000.pdf 未授權公開取用 | 4.71 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
