請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/70603完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 李世光 | |
| dc.contributor.author | Zi-Yi Zheng | en |
| dc.contributor.author | 鄭子逸 | zh_TW |
| dc.date.accessioned | 2021-06-17T04:32:18Z | - |
| dc.date.available | 2020-08-16 | |
| dc.date.copyright | 2018-08-16 | |
| dc.date.issued | 2018 | |
| dc.date.submitted | 2018-08-10 | |
| dc.identifier.citation | [1] WHO. (7 February). The top 10 causes of death. Available: http://www.who.int/mediacentre/factsheets/fs310/en/
[2] L. Peter, N. Noury, and M. Cerny, 'A review of methods for non-invasive and continuous blood pressure monitoring: Pulse transit time method is promising?,' IRBM, vol. 35, no. 5, pp. 271-282, 2014/10/01/ 2014. [3] C. N. Scanaill, D. Nafus, and M. J. G. McGrath, Sensor Technologies: Healthcare, Wellness and Environmental Applications, 1 ed. Apress, 2013, pp. XXV, 336. [4] O. Healthcare. (July 02). Healthcare Wellness & Healthcare Products. Available: https://omronhealthcare.com/2018/01/focus-going-zero-mission-omron-healthcare-unveils-new-innovations-category-firsts-ces/ [5] R. Li, B. Nie, P. Digiglio, and T. Pan, 'Microflotronics: A Flexible, Transparent, Pressure-Sensitive Microfluidic Film,' Advanced Functional Materials, vol. 24, no. 39, pp. 6195-6203, 2014/10/01 2014. [6] H.-L. Kao, C. Holz, A. Roseway, A. Calvo, and C. Schmandt, 'DuoSkin: rapidly prototyping on-skin user interfaces using skin-friendly materials,' presented at the Proceedings of the 2016 ACM International Symposium on Wearable Computers, Heidelberg, Germany, 2016. [7] Y. K. Fuh and B. S. Wang, 'Near field sequentially electrospun three-dimensional piezoelectric fibers arrays for self-powered sensors of human gesture recognition,' Nano Energy, vol. 30, pp. 677-683, December 2016 2016. [8] Y. L. Zheng et al., 'Unobtrusive sensing and wearable devices for health informatics,' IEEE Trans Biomed Eng, vol. 61, no. 5, pp. 1538-54, May 2014. [9] D.-H. Kim et al., 'Epidermal Electronics,' Science, vol. 333, no. 6044, pp. 838-843, 2011. [10] N. Soin et al., 'Novel “3-D spacer” all fibre piezoelectric textiles for energy harvesting applications,' Energy Environ. Sci., vol. 7, no. 5, pp. 1670-1679, 2014. [11] C. Dagdeviren et al., 'Conformable amplified lead zirconate titanate sensors with enhanced piezoelectric response for cutaneous pressure monitoring,' (in English), Nature Communications, vol. 5, Aug 2014. [12] M. Amjadi, K. U. Kyung, I. Park, and M. Sitti, 'Stretchable, Skin-Mountable, and Wearable Strain Sensors and Their Potential Applications: A Review,' (in English), Advanced Functional Materials, vol. 26, no. 11, pp. 1678-1698, Mar 15 2016. [13] T. Yang et al., 'A Wearable and Highly Sensitive Graphene Strain Sensor for Precise Home-Based Pulse Wave Monitoring,' ACS Sens, vol. 2, no. 7, pp. 967-974, Jul 28 2017. [14] C. Pang et al., 'Highly Skin-Conformal Microhairy Sensor for Pulse Signal Amplification,' Advanced Materials, vol. 27, no. 4, pp. 634-640, 2015. [15] J. Booth, 'A short history of blood pressure measurement,' Proceedings of the Royal Society of Medicine, vol. 70, no. 11, pp. 793-799, 1977. [16] T. G. Pickering et al., 'Recommendations for blood pressure measurement in humans and experimental animals: part 1: blood pressure measurement in humans: a statement for professionals from the Subcommittee of Professional and Public Education of the American Heart Association Council on High Blood Pressure Research,' Circulation, vol. 111, no. 5, pp. 697-716, Feb 8 2005. [17] G. Drzewiecki, R. Hood, and H. Apple, 'Theory of the oscillometric maximum and the systolic and diastolic detection ratios,' Ann Biomed Eng, vol. 22, no. 1, pp. 88-96, Jan-Feb 1994. [18] W. P. Sy, 'Ulnar Nerve Palsy Possibly Related to Use of Automatically Cycled Blood Pressure Cuff,' Anesthesia & Analgesia, vol. 60, no. 9, pp. 687-688, 1981. [19] J. D. Bronzino, R. C. Dorf, Ed. The Biomedical Engineering Handbook, 3 ed. (Medical Devices and Systems). Taylor & Francis Group, LLC, 2006. [20] R. Dueck, O. Goedje, and P. Clopton, 'Noninvasive continuous beat-to-beat radial artery pressure via TL-200 applanation tonometry,' Journal of Clinical Monitoring and Computing, vol. 26, no. 2, pp. 75-83, 2012/04/01 2012. [21] L. A. Geddes, M. Voelz, S. James, and D. Reiner, 'Pulse arrival time as a method of obtaining systolic and diastolic blood pressure indirectly,' Medical & Biological Engineering & Computing, vol. 19, no. 5, pp. 671-672, 1981. [22] S. NIBP. (2018). Long Term Blood Pressure Measurement and more. Available: http://somnomedics.eu/products/long-term-blood-pressure-somnotouchtm-nibp/ [23] J. G. Betts et al., Anatomy & Physiology. OpenStax College, Rice University, 2013. [24] W. W. Nichols, 'Clinical measurement of arterial stiffness obtained from noninvasive pressure waveforms,' American Journal of Hypertension, vol. 18, no. S1, pp. 3S-10S, 2005. [25] I. P. Herman, E. Greenbaum, Ed. Physics of the human body (Biological and Medical Physics, Biomedical Engineering). Springer, 2016. [26] K. Takazawa et al., 'Assessment of vasoactive agents and vascular aging by the second derivative of photoplethysmogram waveform,' Hypertension, vol. 32, no. 2, pp. 365-70, Aug 1998. [27] T. Okuda, T. Oh-i, and M. Koga, 'Evaluation of acceleration plethysmograms in dermatology--efficacy of lipo PGE1 preparations against herpes zoster and neuralgia following herpes,' J Dermatol, vol. 24, no. 12, pp. 751-7, Dec 1997. [28] I. Imanaga, H. Hara, S. Koyanagi, and K. Tanaka, 'Correlation between Wave Components of the Second Derivative of Plethysmogram and Arterial Distensibility,' Japanese Heart Journal, vol. 39, no. 6, pp. 775-784, 1998. [29] N. Nousou, S. Urase, Y. Maniwa, K. Fujimura, and Y. Fukui, 'Classification of Acceleration Plethysmogram Using Self-Organizing Map,' pp. 681-684, 2006. [30] M. Elgendi, 'On the analysis of fingertip photoplethysmogram signals,' Curr Cardiol Rev, vol. 8, no. 1, pp. 14-25, Feb 2012. [31] D. Damjanovic, 'Ferroelectric, dielectric and piezoelectric properties of ferroelectric thin films and ceramics,' (in English), Reports on Progress in Physics, vol. 61, no. 9, pp. 1267-1324, Sep 1998. [32] M. E. Lines and A. M. Glass, A. M. W. Glass and M. E. Lines, Eds. Principles and Applications of Ferroelectrics and Related Materials. Oxford, 2001. [33] T. Furukawa, 'Piezoelectricity and pyroelectricity in polymers,' IEEE Transactions on Electrical Insulation, vol. 24, no. 3, pp. 375-394, 1989. [34] K. S. Ramadan, D. Sameoto, and S. Evoy, 'A review of piezoelectric polymers as functional materials for electromechanical transducers,' (in English), Smart Materials and Structures, vol. 23, no. 3, Mar 2014. [35] H. F. Mark, Encyclopedia of Polymer Science and Technology, 3rd ed. John Wiley & Sons, 2004. [36] J. Y.-H. Kim, A. Cheng, and Y.-C. Tai, 'Parylene-C as a piezoelectric material,' IEEE 24th International Conference on Micro Electro Mechanical Systems, pp. 473-476, 2011. [37] C. Liu, F. Djuth, X. Li, R. Chen, Q. Zhou, and K. K. Shung, 'Micromachined high frequency PMN-PT/epoxy 1-3 composite ultrasonic annular array,' Ultrasonics, vol. 52, no. 4, pp. 497-502, Apr 2012. [38] Y. Xu, Ferroelectric materials and their applications. Amsterdam; New York; New York, NY, USA: North-Holland ; Sole distributors for the USA and Canada, Elsevier Science Pub. Co., 1991. [39] G. M. Sessler and J. E. West, 'Self‐Biased Condenser Microphone with High Capacitance,' The Journal of the Acoustical Society of America, vol. 34, no. 11, pp. 1787-1788, 1962. [40] K. Heiji, 'The Piezoelectricity of Poly (vinylidene Fluoride),' Japanese Journal of Applied Physics, vol. 8, no. 7, p. 975, 1969. [41] P. Martins, A. C. Lopes, and S. Lanceros-Mendez, 'Electroactive phases of poly(vinylidene fluoride): Determination, processing and applications,' (in English), Progress in Polymer Science, vol. 39, no. 4, pp. 683-706, Apr 2014. [42] H. F. Mark, Encyclopedia of Polymer Science and Technology (no. 9). Wiley, 2004. [43] D. C. Bassett, Developments in Crystalline Polymers—1 (Polymer Science and Technology Series). Dordrecht: Springer, 1982. [44] 'IEEE Standard on Piezoelectricity,' ANSI/IEEE Std 176-1987, p. 0_1, 1988. [45] J.-Y. Ke, 'Development of a piezoelectric pressure sensor based on highly aligned electrospun fibers and the optimization of Interdigitated Electrodes,' Master, Institute of Applied Mechanics, National Taiwan University, 2017. [46] L. Persano et al., 'High performance piezoelectric devices based on aligned arrays of nanofibers of poly(vinylidenefluoride-co-trifluoroethylene),' Nat Commun, vol. 4, p. 1633, 2013. [47] L. Rayleigh, 'XX. On the equilibrium of liquid conducting masses charged with electricity,' The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science, vol. 14, no. 87, pp. 184-186, 1882/09/01 1882. [48] Z. Li and C. Wang, One-Dimensional Nanostructures Electrospinning Technique and Unique Nanofibers (SPRINGER BRIEFS IN MATERIALS). Heidelberg, Germany, 2013. [49] B. Vonnegut and R. L. Neubauer, 'Production of monodisperse liquid particles by electrical atomization,' Journal of Colloid Science, vol. 7, no. 6, pp. 616-622, 1952/12/01/ 1952. [50] V. G. Drozin, 'The electrical dispersion of liquids as aerosols,' Journal of Colloid Science, vol. 10, no. 2, pp. 158-164, 1955/04/01/ 1955. [51] P. K. Baumgarten, 'Electrostatic Spinning of Acrylic Microfibers,' (in English), Journal of Colloid and Interface Science, vol. 36, no. 1, pp. 71-+, 1971. [52] G. C. Rutledge and S. V. Fridrikh, 'Formation of fibers by electrospinning,' Advanced Drug Delivery Reviews, vol. 59, no. 14, pp. 1384-1391, 2007/12/10/ 2007. [53] C. S. Kong, S. J. Choi, H. S. Lee, and H. S. Kim, 'Observation of Electrospinning Behavior of Nanoscale Fibers by a High-Speed Camera,' Journal of Macromolecular Science, Part B, vol. 55, no. 2, pp. 201-210, 2016/02/01 2016. [54] J. M. Deitzel, J. Kleinmeyer, D. Harris, and N. C. Beck Tan, 'The effect of processing variables on the morphology of electrospun nanofibers and textiles,' Polymer, vol. 42, no. 1, pp. 261-272, 2001. [55] Q. Yang et al., 'Influence of solvents on the formation of ultrathin uniform poly(vinyl pyrrolidone) nanofibers with electrospinning,' Journal of Polymer Science Part B: Polymer Physics, vol. 42, no. 20, pp. 3721-3726, 2004. [56] X. Yuan, Y. Zhang, C. Dong, and J. Sheng, 'Morphology of ultrafine polysulfone fibers prepared by electrospinning,' Polymer International, vol. 53, no. 11, pp. 1704-1710, 2004. [57] C. Mit-uppatham, M. Nithitanakul, and P. Supaphol, 'Ultrafine Electrospun Polyamide-6 Fibers: Effect of Solution Conditions on Morphology and Average Fiber Diameter,' Macromolecular Chemistry and Physics, vol. 205, no. 17, pp. 2327-2338, 2004. [58] H. Fong, I. Chun, and D. H. Reneker, 'Beaded nanofibers formed during electrospinning,' Polymer, vol. 40, no. 16, pp. 4585-4592, 1999/07/01/ 1999. [59] Z.-M. Huang, Y. Z. Zhang, M. Kotaki, and S. Ramakrishna, 'A review on polymer nanofibers by electrospinning and their applications in nanocomposites,' Composites Science and Technology, vol. 63, no. 15, pp. 2223-2253, 2003/11/01/ 2003. [60] Y. M. Shin, M. M. Hohman, M. P. Brenner, and G. C. Rutledge, 'Experimental characterization of electrospinning: the electrically forced jet and instabilities,' Polymer, vol. 42, no. 25, pp. 09955-09967, 2001/12/01/ 2001. [61] D. Sun, C. Chang, S. Li, and L. Lin, 'Near-Field Electrospinning,' Nano Letters, vol. 6, no. 4, pp. 839-842, 2006/04/01 2006. [62] C. Chang, K. Limkrailassiri, and L. Lin, 'Continuous near-field electrospinning for large area deposition of orderly nanofiber patterns,' Applied Physics Letters, vol. 93, no. 12, p. 123111, 2008/09/22 2008. [63] A. Theron, E. Zussman, and A. L. Yarin, 'Electrostatic field-assisted alignment of electrospun nanofibres,' (in English), Nanotechnology, vol. 12, no. 3, pp. 384-390, Sep 2001. [64] G. Mathew, J. P. Hong, J. M. Rhee, D. J. Leo, and C. Nah, 'Preparation and anisotropic mechanical behavior of highly-oriented electrospun poly(butylene terephthalate) fibers,' Journal of Applied Polymer Science, vol. 101, no. 3, pp. 2017-2021, 2006/08/05 2006. [65] X.-X. He et al., 'Near-Field Electrospinning: Progress and Applications,' The Journal of Physical Chemistry C, vol. 121, no. 16, pp. 8663-8678, 2017/04/27 2017. [66] M. A. Barique and H. Ohigashi, 'Annealing effects on the Curie transition temperature and melting temperature of poly(vinylidene fluoride/trifluoroethylene) single crystalline films,' (in English), Polymer, vol. 42, no. 11, pp. 4981-4987, May 2001. [67] B. E. El Mohajir and N. Heymans, 'Changes in structural and mechanical behaviour of PVDF with processing and thermomechanical treatments. 1. Change in structure,' (in English), Polymer, vol. 42, no. 13, pp. 5661-5667, Jun 2001. [68] D. Mao, M. A. Quevedo-Lopez, H. Stiegler, B. E. Gnade, and H. N. Alshareef, 'Optimization of poly(vinylidene fluoride-trifluoroethylene) films as non-volatile memory for flexible electronics,' (in English), Organic Electronics, vol. 11, no. 5, pp. 925-932, May 2010. [69] D. Mao, B. E, and M. A, 'Ferroelectric Properties and Polarization Switching Kinetic of Poly (vinylidene fluoride-trifluoroethylene) Copolymer,' 2011. [70] J. Karki. Signal Conditioning Piezoelectric Sensors [Online]. Available: https://www.ti.com/lit/an/sloa033a/sloa033a.pdf [71] C.-K. Lee, 'Piezoelectric laminate: Theory and experiments for distributed senors and actuators,' Intelligent Structural Systems, pp. 75-167, 1992. [72] MODEL SR570 Low-Noise Current Preamplifier (User's Manual). California: Stanford Research Systems, 2015, p. 17. [73] (August 6). All About Heart Rate (Pulse). Available: https://www.heart.org/en/health-topics/high-blood-pressure/the-facts-about-high-blood-pressure/all-about-heart-rate-pulse | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/70603 | - |
| dc.description.abstract | 本論文主旨是以高靈敏度之可撓式壓電薄膜感測器為基礎,開發可貼附於皮膚之穿戴式血壓計。而為了達到長時間連續生理訊號量測以及可貼附於表皮上,感測器材料必須具有生物相容性與可撓性,而本論文所選用的壓電聚合物,聚(偏氟乙烯-三氟乙烯) P(VDF-TrFE)除了具生物相容性、可撓性之外亦具有良好的化學抗性。
薄膜的製作是利用靜電紡絲製成方法搭配高轉速之滾筒收集器,以製備具有高排列性的壓電微米絲線薄膜,並經過退火、電暈極化等製成提高壓電性質,而由於薄膜是由微米絲線堆疊而成,因薄膜中具有許多孔隙,而這也使得薄膜中同時具有壓電效應與靜電效應。在感測器的製作上,利用平板式電極將電訊號取出,並探討電極幾何、微米絲線方向及彎曲方向對於靈敏度的影響,此外亦探討壓電效應與靜電效應的對於輸出的貢獻,在量化量測上,利用四點彎曲法得出應變與輸出訊號的關係,其結果顯示,在10 mm×10 mm的電極面積下,彎曲方向與絲線方向在平行與垂直的情況下靈敏度具有7.4 到19.3倍的差異,彎曲方向與絲線方向在平行時,壓電效應與靜電效應對靈敏度貢獻分別為68%及32%,而在垂直方向,靜電相對壓電則是-43%的輸出,彎曲方向與絲線方向平行時具有最高的靈敏度,可達到1.06pA/με,另外在2 mm×10 mm電極面積下測試的結果則顯示在電極的長邊與微米絲線平行的情況下,其方向性的比值亦有6.6~12.6倍的差異。 在人體試驗上,除了橈動脈的量測以外,亦比較不同條件下的感測器對於手部運動的抵抗能力,而其結果顯示,在絲線、電極長邊、血管方向三者平行的情況下,具最佳的脈搏波形輸出,且手部運動對於感測器的影響最小,而在不同受試者的量測上,皆可量測到完整的脈搏波形,且感測器之輸出與PPG訊號、血流速訊號皆有相對應的特徵,如心室收縮所造成的波峰、下半身的反射波等,而與PPG訊號的心率比較,差值皆不超過0.09秒。 | zh_TW |
| dc.description.abstract | The purpose of this thesis is to develop a wearable blood pressure device based on a flexible membrane sensor. In order to achieve long-term continuous measurement and attach to the epidermis, the sensor material must be biocompatible and flexible. The piezoelectric polymer P(VDF-TrFE) not only is biocompatible and flexible, it also has an excellent chemical resistance. The piezoelectric membrane was fabricated by electrospinning with a high-speed drum collector, the microfibers can have a high degree of alignment followed by annealing and corona charging process to enhance piezoelectric property. Since the membrane was built by microfibers, there are many void in the membrane. This micro-structure makes the membrane have both piezoelectric and electrostatic effect. In this study, specific surface electrodes are designed for P(VDF-TrFE) membrane and 4-point bending test was used to perform small strain measurement. Experimental results show that using 10 mm by 10 mm surface electrodes, the sensitivity for fibers in parallel with bending was 7.4 to 19.3 higher than the one in perpendicular with bending direction. For the condition of having bending direction and the fibers direction are in parallel, the piezoelectric effect and the electrostatic effect contribute to the sensitivity of 68% and 32%, respectively; while in the condition of vertically aligned, the contribution of electrostatic signal is opposite to piezoelectric signal in -43%. The optimal condition is to align the sensor in parallel with bending direction, the sensitivity can reach 1.06 pA/με. In addition, the results of using 2 mm by 10 mm electrodes show that having fibers align with the bending direction, the ratio of directionality is 6.6(before immerse IPA) and 12.6(after immerse IPA).
In human tests, we study the ability of different sensors to minimize the influence of body movement and its sensitivity to arterial-induced skin deformation. Experimental results show that using the sensor with fibers align with blood vessel on the wrist has the highest performance. Furthermore, complete pulse waveforms can be measured among different subjects, and the output of the sensor has characteristics corresponding to the PPG signal and the blood flow signal. The peaks caused by ventricular contraction and the reflected wave of the lower body can also be characterized. The sensor output is also compared to the heart rate of the PPG signal, and the difference is less than 0.09 seconds. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-17T04:32:18Z (GMT). No. of bitstreams: 1 ntu-107-R05525085-1.pdf: 6524450 bytes, checksum: cb57f4b23d428804a2bab1897719aca1 (MD5) Previous issue date: 2018 | en |
| dc.description.tableofcontents | 致謝 I
中文摘要 II ABSTRACT IV 目錄 VI 圖目錄 IX 第1章 緒論 1 1.1 研究動機 1 1.2 文獻回顧 5 1.2.1 穿戴式感測器 5 1.2.1 連續量測之血壓計 9 1.2.2 血壓量測方法及脈搏波形分析 12 1.3 論文架構 16 第2章 鐵電與壓電材料 18 2.1 鐵電材料 18 2.1.1 鐵電材料介紹 18 2.1.2 壓電與焦電特性 20 2.2 聚合物壓電材料 21 2.2.1 聚合物壓電材料分類 21 2.2.2 聚偏氟乙烯 23 2.2.3 聚(偏氟乙烯-三氟乙烯) 24 2.2.4 壓電本構方程式 25 第3章 壓電薄膜式感測器之製程與實驗架設 27 3.1 靜電紡絲 27 3.1.1 靜電紡絲介紹 27 3.1.2 實驗設置與參數設定 33 3.2 退火與極化 34 3.2.1 退火 35 3.2.2 極化 36 3.3 電極與感測器結構設計 37 3.3.1 電極設計 37 3.3.2 感測器製程 38 3.4 實驗架設 38 3.4.1 介面電路設置 38 3.4.2 四點彎曲測試實驗架設 42 3.4.3 耐久性測試實驗架設 44 第4章 聚(偏氟乙烯-三氟乙烯)薄膜特性與感測器訊號分析 45 4.1 聚(偏氟乙烯-三氟乙烯)薄膜特性 45 4.2 靈敏度測試 47 4.2.1 感測器之靜電與壓電效應分析 47 4.3 耐久性測試 54 4.3.1 耐久性測試結果 54 4.4 脈搏量測 56 4.4.1 感測器應用於橈動脈脈搏量測之輸出表現 56 4.4.2 橈動脈量測及驗證 66 4.4.3 脈搏訊號分析 70 第5章 結果與討論 78 第6章 未來展望 80 參考文獻 81 | |
| dc.language.iso | zh-TW | |
| dc.subject | 橈動脈脈搏波形 | zh_TW |
| dc.subject | 可撓式感測器 | zh_TW |
| dc.subject | 靜電紡絲 | zh_TW |
| dc.subject | 聚(偏氟乙烯-三氟乙烯) | zh_TW |
| dc.subject | 連續非侵入式血壓量測 | zh_TW |
| dc.subject | P(VDF-TrFE) | en |
| dc.subject | electrospinning | en |
| dc.subject | flexible sensor | en |
| dc.subject | radial artery pulse waveform | en |
| dc.subject | Continuous non invasive arterial pressure | en |
| dc.title | 以高排列性聚(偏氟乙烯-三氟乙烯)微米絲為基礎之柔性壓電血壓計開發 | zh_TW |
| dc.title | Development of a highly aligned P(VDF-Trfe) microfibers for
the application of blood pressure sensor | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 106-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.coadvisor | 許聿翔 | |
| dc.contributor.oralexamcommittee | 吳文中,李世仁,柯文清 | |
| dc.subject.keyword | 聚(偏氟乙烯-三氟乙烯),靜電紡絲,可撓式感測器,橈動脈脈搏波形,連續非侵入式血壓量測, | zh_TW |
| dc.subject.keyword | P(VDF-TrFE),electrospinning,flexible sensor,radial artery pulse waveform,Continuous non invasive arterial pressure, | en |
| dc.relation.page | 86 | |
| dc.identifier.doi | 10.6342/NTU201802977 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2018-08-12 | |
| dc.contributor.author-college | 工學院 | zh_TW |
| dc.contributor.author-dept | 工程科學及海洋工程學研究所 | zh_TW |
| 顯示於系所單位: | 工程科學及海洋工程學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-107-1.pdf 未授權公開取用 | 6.37 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
