Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 理學院
  3. 物理學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/70601
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor陳永芳(Yang-Fang Chen)
dc.contributor.authorShu-Yuan Chiangen
dc.contributor.author蔣澍元zh_TW
dc.date.accessioned2021-06-17T04:32:14Z-
dc.date.available2028-12-31
dc.date.copyright2018-08-16
dc.date.issued2018
dc.date.submitted2018-08-10
dc.identifier.citationChapter 1
1. Karunagaran, B.; Mangalaraj, D.; Narayandass, S. K.; Manoravi, P.; Joseph, M.; Gopal, V. Smart materials and structures 2003, 12, (2), 188.
2. Rogalski, A., Infrared detectors. CRC press: 2010.
3. Liu, H.; Chen, Z.; Chen, X.; Chu, S.; Huang, J.; Peng, R. Journal of Materials
Chemistry C 2016, 4, (40), 9399-9404.
4. Paton, K. R.; Varrla, E.; Backes, C.; Smith, R. J.; Khan, U.; O’Neill, A.; Boland, C.; Lotya, M.; Istrate, O. M.; King, P. Nature materials 2014, 13, (6), 624.
5. Yao, Y.; Lin, Z.; Li, Z.; Song, X.; Moon, K.-S.; Wong, C.-p. Journal of Materials Chemistry 2012, 22, (27), 13494-13499.
6. Vera-Reveles, G.; Simmons, T. J.; Bravo-Sánchez, M.; Vidal, M.; Navarro-Contreras, H.; González, F. J. ACS applied materials & interfaces 2011, 3, (8), 3200-3204.
7. Hempel, M.; Nezich, D.; Kong, J.; Hofmann, M. Nano letters 2012, 12, (11), 5714- 5718.
8. Li, X.; Zhang, R.; Yu, W.; Wang, K.; Wei, J.; Wu, D.; Cao, A.; Li, Z.; Cheng, Y.; Zheng, Q. Scientific reports 2012, 2, 870.
9. Plechinger, G.; Castellanos-Gomez, A.; Buscema, M.; van der Zant, H. S.; Steele, G. A.; Kuc, A.; Heine, T.; Schüller, C.; Korn, T. 2D Materials 2015, 2, (1), 015006.
10. Chen, Z.; Ming, T.; Goulamaly, M. M.; Yao, H.; Nezich, D.; Hempel, M.; Hofmann, M.; Kong, J. Advanced Functional Materials 2016, 26, (28), 5061-5067.
Chapter 2
1. Karunagaran, B.; Mangalaraj, D.; Narayandass, S. K.; Manoravi, P.; Joseph, M.; Gopal, V. Smart materials and structures 2003, 12, (2), 188.
2. Rogalski, A., Infrared detectors. CRC press: 2010.
3. Allen, M. J.; Tung, V. C.; Kaner, R. B. Chemical reviews 2009, 110, (1), 132-145.
4. Andreoni, W., The physics of fullerene-based and fullerene-related materials.
Springer Science & Business Media: 2000; Vol. 23.
5. Saito, R.; Dresselhaus, G.; Dresselhaus, M. S., Physical properties of carbon nanotubes. World Scientific: 1998.
6. Semenoff, G. W. Physical Review Letters 1984, 53, (26), 2449.
7. Meyer, J. C.; Geim, A. K.; Katsnelson, M. I.; Novoselov, K. S.; Booth, T. J.; Roth,
S. Nature 2007, 446, (7131), 60.
8. Sarma, S. D.; Adam, S.; Hwang, E.; Rossi, E. Reviews of Modern Physics 2011, 83, (2), 407.
9. Slonczewski, J.; Weiss, P. Physical Review 1958, 109, (2), 272.
10. Wallace, P. R. Physical Review 1947, 71, (9), 622.
11. Bena, C.; Kivelson, S. A. Physical Review B 2005, 72, (12), 125432.
12. Schedin, F.; Geim, A.; Morozov, S.; Hill, E.; Blake, P.; Katsnelson, M.; Novoselov,
K. Nature materials 2007, 6, (9), 652.
13. Novoselov, K. S.; Geim, A. K.; Morozov, S. V.; Jiang, D.; Zhang, Y.; Dubonos, S. V.; Grigorieva, I. V.; Firsov, A. A. science 2004, 306, (5696), 666-669.
14. Novoselov, K. S.; Geim, A. K.; Morozov, S.; Jiang, D.; Katsnelson, M.; Grigorieva, I.; Dubonos, S.; Firsov; AA. nature 2005, 438, (7065), 197.
15. Neto, A. C.; Guinea, F.; Peres, N. M. Physics World 2006, 19, (11), 33.
16. Kechedzhi, K.; Fal’ko, V. I.; McCann, E.; Altshuler, B. Physical review letters 2007, 98, (17), 176806.
17. Charlier, J.-C.; Blase, X.; Roche, S. Reviews of modern physics 2007, 79, (2), 677. 18. Nair, R. R.; Blake, P.; Grigorenko, A. N.; Novoselov, K. S.; Booth, T. J.; Stauber, T.; Peres, N. M.; Geim, A. K. Science 2008, 320, (5881), 1308-1308.
19. Maffucci, A.; Miano, G. Applied Sciences 2014, 4, (2), 305-317.
20. Zhang, G.; Liu, H.; Qu, J.; Li, J. Energy & Environmental Science 2016, 9, (4), 1190-1209.
21. Radisavljevic, B.; Radenovic, A.; Brivio, J.; Giacometti, i. V.; Kis, A. Nature nanotechnology 2011, 6, (3), 147.
22. Mak, K. F.; Lee, C.; Hone, J.; Shan, J.; Heinz, T. F. Physical review letters 2010, 105, (13), 136805.
23. Behrendt, W.; Haubold, R.; Gmelin, L.; Meyer, R. J.; Pietsch, E. H. E.; Fluck, E.; Deutsche Chemische, G.; Gmelin-Institut für Anorganische Chemie und, G., Gmelin handbook of inorganic and organometallic chemistry. Verl. Chemie: Berlin, 1997.
24. Lee, C.; Yan, H.; Brus, L. E.; Heinz, T. F.; Hone, J.; Ryu, S. ACS nano 2010, 4, (5), 2695-2700.
25. He, Z.; Que, W. Applied Materials Today 2016, 3, 23-56.
26. PDMS Soft-Lithography Station - Elveflow. https://www.elveflow.com/microfluidic-flow-control-products/soft-lithography- products/softlithobox-pdms-soft-lithography-station/
27. Queisser, H. J. Physical review letters 1985, 54, (3), 234.
Chapter 3
1. Johnston, I.; McCluskey, D.; Tan, C.; Tracey, M. Journal of Micromechanics and Microengineering 2014, 24, (3), 035017.
Chapter 4
1. Bertrand, P. Physical Review B 1991, 44, (11), 5745.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/70601-
dc.description.abstract近年來,科學家們致力於紅外成像領域的發展;其中,對輻射熱能具有高靈敏度的感測器──輻射熱計,受到了高度重視。輻射熱計藉由吸收輻射熱能後迅速改變的電阻作為感測機制,因此電阻溫度係數(temperature coefficient of resistance,TCR)是用以定義輻射熱計性能的重要參數。本作中,我們將剪切剝離的二維材料沈積於聚二甲基矽氧烷(PDMS)以形成被結構侷限於特定維度的薄膜;我們演示了以不同維度排列的石墨烯薄膜的輻射熱計表現,並利用二硫化鉬(MoS2)實現一種具有出色靈敏度及解析度的透明、低成本輻射熱計,其電阻溫度係數達到 133 %K-1 且其歸一化電流響應率(normalized current responsivity)高達-7.7 × 105 %W-1。此外,我們也將類似結構應用於石墨烯與二硫化鉬的組合,並演示了兩種光偵測器:石墨烯接觸型二硫化鉬光偵測器以及二硫化鉬參雜型石墨稀光偵測器。本作中的結果不僅顯示了局限於聚合物結構中二維薄膜的低成本及高靈敏度的特性,更暗示了二維薄膜在不同維度下的光電應用潛力。zh_TW
dc.description.abstractBolometer, a device for infrared (IR) thermal imaging, has been developed a lot in recent years. Electrical resistance of a bolometer varies rapidly due to the change in temperature caused by the absorption of IR radiation, so the temperature coefficient of resistance (TCR) is a vital parameter for characterizing the performances of bolometers. Here, based on the thin film of shear exfoliated two-dimensional (2D) materials confined in the polydimethylsiloxane (PDMS) substrate, we demonstrate the bolometric performances of the graphene films in different dimensions, and report a low-cost, transparent molybdenum disulfide (MoS2) bolometer with outstanding sensitivity, whose normalized current responsivity is up to -7.7 × 105 %W-1 and TCR achieves 133 %K-1. Its extremely tiny active area as pixel length facilitates high spatial resolution thermal imaging. In addition, we produce a graphene-contact MoS2 photodetector and a MoS2- doped graphene photodetector in the similar structure. These results not only present the properties of the low cost and high transparency of the 2D material films confined in the polymer structure but also imply the optoelectronics applications of thin films arranged in another dimension.en
dc.description.provenanceMade available in DSpace on 2021-06-17T04:32:14Z (GMT). No. of bitstreams: 1
ntu-107-R05222037-1.pdf: 5658749 bytes, checksum: 2896940a23fa51f972e3a8aa4bb7a011 (MD5)
Previous issue date: 2018
en
dc.description.tableofcontents口試委員會審定書 ................................................................................................... #
誌謝 ......................................................................................................................... i
中文摘要 ................................................................................................................ iii
ABSTRACT ............................................................................................................ iv
CONTENTS ............................................................................................................ v
LIST OF FIGURES ................................................................................................. viii
LIST OF TABLES ................................................................................................... xii
Chapter 1 Introduction ............................................................................................ 1
References ............................................................................................................. 5
Chapter 2 Background Knowledge ......................................................................... 7
2.1 Bolometer ......................................................................................................... 7
2.2 Graphene ......................................................................................................... 8
2.3 MoS2 .............................................................................................................. 11
2.4 PDMS ............................................................................................................. 12
2.5 Raman scattering ........................................................................................... 13
References ........................................................................................................... 15
Chapter 3 Experiment Details................................................................................ 18
3.1 Experimental instruments ............................................................................... 18
3.1.1 Shear exfoliation machine ............................................................................. 18
3.1.2 PDMS cutter ................................................................................................ 20
3.1.3 Oxygen plasma cleaner ................................................................................ 21
3.1.4 Sputter coater ............................................................................................. 22
3.1.5 Scanning electron microscope (SEM) .......................................................... 24
3.2 Fabrication ..................................................................................................... 26
3.2.1 Shear exfoliated 2D material flakes ............................................................. 26
3.2.2 PDMS substrate .......................................................................................... 30
3.2.3 Gap in PDMS substrate ............................................................................... 31
3.2.4 Electrodes in gap ........................................................................................ 32
3.2.5 Confinement of 2D material flakes in PDMS structure ................................ 36
3.2.6 Spray coating method ................................................................................. 45
References ........................................................................................................... 48
Chapter 4 Results and Discussions ...................................................................... 49
4.1 Shear exfoliated graphene flakes ................................................................... 49
4.1.1 Graphene flakes ........................................................................................... 49
4.1.2 MoS2 flakes ................................................................................................. 53
4.2 Graphene bolometer....................................................................................... 56
4.2.1 Responsivity ................................................................................................ 56
4.2.2 Temperature coefficient of resistance ........................................................ 60
4.3 MoS2 bolometer ............................................................................................. 61
4.3.1 Responsivity ................................................................................................. 61
4.3.2 Temperature coefficient of resistance ......................................................... 65
4.3.3 Spatial Resolution ....................................................................................... 66
4.4 Another application: photodetector ............................................................... 69
4.4.1 Graphene-contacted MoS2 photodetector .................................................. 69
4.4.2 MoS2-doped graphene photodetector......................................................... 70
References ........................................................................................................... 72
Chapter 5 Conclusion and Future Works .............................................................. 73
dc.language.isoen
dc.subject二硫化鉬zh_TW
dc.subject聚二甲基矽氧烷zh_TW
dc.subject剪切剝離法zh_TW
dc.subject奈米材料zh_TW
dc.subject石墨烯zh_TW
dc.subject輻射熱計zh_TW
dc.subjectshear exfoliationen
dc.subjectPDMSen
dc.subjectbolometeren
dc.subjectgrapheneen
dc.subjectnanomaterialsen
dc.subjectMoS2en
dc.title基於維度侷限結構之二維輻射熱計zh_TW
dc.titleA Bolometer Based on Dimensionally Confined 2D Materialsen
dc.typeThesis
dc.date.schoolyear106-2
dc.description.degree碩士
dc.contributor.oralexamcommittee謝馬利歐(Mario Hofmann),林泰源(Tai-Yuan Lin)
dc.subject.keyword輻射熱計,石墨烯,二硫化鉬,聚二甲基矽氧烷,剪切剝離法,奈米材料,zh_TW
dc.subject.keywordbolometer,graphene,MoS2,PDMS,shear exfoliation,nanomaterials,en
dc.relation.page74
dc.identifier.doi10.6342/NTU201802579
dc.rights.note有償授權
dc.date.accepted2018-08-12
dc.contributor.author-college理學院zh_TW
dc.contributor.author-dept物理學研究所zh_TW
顯示於系所單位:物理學系

文件中的檔案:
檔案 大小格式 
ntu-107-1.pdf
  未授權公開取用
5.53 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved