請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/70582完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 李永凌 | |
| dc.contributor.author | Fu-Yu Wu | en |
| dc.contributor.author | 吳馥羽 | zh_TW |
| dc.date.accessioned | 2021-06-17T04:31:42Z | - |
| dc.date.available | 2018-09-04 | |
| dc.date.copyright | 2018-09-04 | |
| dc.date.issued | 2018 | |
| dc.date.submitted | 2018-08-10 | |
| dc.identifier.citation | 1. Helenius, A. and M. Aebi, Intracellular functions of N-linked glycans. Science, 2001. 291(5512): p. 2364-9.
2. Mollicone, R., et al., Activity, splice variants, conserved peptide motifs, and phylogeny of two new alpha1,3-fucosyltransferase families (FUT10 and FUT11). J Biol Chem, 2009. 284(7): p. 4723-38. 3. Ma, B., J.L. Simala-Grant, and D.E. Taylor, Fucosylation in prokaryotes and eukaryotes. Glycobiology, 2006. 16(12): p. 158R-184R. 4. Okazaki, A., et al., Fucose depletion from human IgG1 oligosaccharide enhances binding enthalpy and association rate between IgG1 and FcgammaRIIIa. J Mol Biol, 2004. 336(5): p. 1239-49. 5. Wang, X., et al., Core fucosylation regulates epidermal growth factor receptor-mediated intracellular signaling. J Biol Chem, 2006. 281(5): p. 2572-7. 6. Wang, X., et al., Dysregulation of TGF-beta1 receptor activation leads to abnormal lung development and emphysema-like phenotype in core fucose-deficient mice. Proc Natl Acad Sci U S A, 2005. 102(44): p. 15791-6. 7. Zhao, Y., et al., Deletion of core fucosylation on alpha3beta1 integrin down-regulates its functions. J Biol Chem, 2006. 281(50): p. 38343-50. 8. Osumi, D., et al., Core fucosylation of E-cadherin enhances cell-cell adhesion in human colon carcinoma WiDr cells. Cancer Sci, 2009. 100(5): p. 888-95. 9. Takahashi, T., et al., alpha1,6fucosyltransferase is highly and specifically expressed in human ovarian serous adenocarcinomas. Int J Cancer, 2000. 88(6): p. 914-9. 10. Ito, Y., et al., Expression of alpha1,6-fucosyltransferase (FUT8) in papillary carcinoma of the thyroid: its linkage to biological aggressiveness and anaplastic transformation. Cancer Lett, 2003. 200(2): p. 167-72. 11. Muinelo-Romay, L., et al., Expression and enzyme activity of alpha(1,6)fucosyltransferase in human colorectal cancer. Int J Cancer, 2008. 123(3): p. 641-6. 12. Chen, C.Y., et al., Fucosyltransferase 8 as a functional regulator of nonsmall cell lung cancer. Proc Natl Acad Sci U S A, 2013. 110(2): p. 630-5. 13. Chang, Y.T., et al., Epidemiological study of psoriasis in the national health insurance database in Taiwan. Acta Derm Venereol, 2009. 89(3): p. 262-6. 14. Boehncke, W.H. and M.P. Schon, Psoriasis. Lancet, 2015. 386(9997): p. 983-94. 15. Rajpara, A.N., R. Goldner, and A. Gaspari, Psoriasis: can statins play a dual role? Dermatol Online J, 2010. 16(2): p. 2. 16. Edgar, R., M. Domrachev, and A.E. Lash, Gene Expression Omnibus: NCBI gene expression and hybridization array data repository. Nucleic Acids Res, 2002. 30(1): p. 207-10. 17. Bigler, J., et al., Cross-study homogeneity of psoriasis gene expression in skin across a large expression range. PLoS One, 2013. 8(1): p. e52242. 18. Kulski, J.K., et al., Gene expression profiling of Japanese psoriatic skin reveals an increased activity in molecular stress and immune response signals. J Mol Med (Berl), 2005. 83(12): p. 964-75. 19. Reischl, J., et al., Increased expression of Wnt5a in psoriatic plaques. J Invest Dermatol, 2007. 127(1): p. 163-9. 20. Swindell, W.R., et al., Heterogeneity of inflammatory and cytokine networks in chronic plaque psoriasis. PLoS One, 2012. 7(3): p. e34594. 21. Kelel, M., Epidermal core fucosylation regulates keratinocyte proliferation through EGFR signaling pathway (Unpublished), in Institute of Biomedical Sciences, Academia Sinica. 2018. 22. Yang, M.F., Role of fucosyltransferase 8 regulating keratinocyte proliferation in psoriasis (Unpublished master's thesis), in Institute of Epidemiology and Preventive Medicine, National Taiwan University. 2016. 23. Carlen, L.M., et al., Proteome analysis of skin distinguishes acute guttate from chronic plaque psoriasis. J Invest Dermatol, 2005. 124(1): p. 63-9. 24. Plavina, T., et al., Increased plasma concentrations of cytoskeletal and Ca2+-binding proteins and their peptides in psoriasis patients. Clin Chem, 2008. 54(11): p. 1805-14. 25. Piruzian, E., et al., Integrated network analysis of transcriptomic and proteomic data in psoriasis. BMC Syst Biol, 2010. 4: p. 41. 26. Ryu, J., et al., Proteomic analysis of psoriatic skin tissue for identification of differentially expressed proteins: up-regulation of GSTP1, SFN and PRDX2 in psoriatic skin. Int J Mol Med, 2011. 28(5): p. 785-92. 27. Schonthaler, H.B., et al., S100A8-S100A9 protein complex mediates psoriasis by regulating the expression of complement factor C3. Immunity, 2013. 39(6): p. 1171-81. 28. Williamson, J.C., et al., A proteomics approach to the identification of biomarkers for psoriasis utilising keratome biopsy. J Proteomics, 2013. 94: p. 176-85. 29. Fattahi, S., et al., Alpha-1 antitrypsin, retinol binding protein and keratin 10 alterations in patients with psoriasis vulgaris, a proteomic approach. Iran J Basic Med Sci, 2014. 17(9): p. 651-5. 30. Cretu, D., et al., Quantitative tandem mass-spectrometry of skin tissue reveals putative psoriatic arthritis biomarkers. Clin Proteomics, 2015. 12(1): p. 1. 31. Lundberg, K.C., et al., Proteomics of skin proteins in psoriasis: from discovery and verification in a mouse model to confirmation in humans. Mol Cell Proteomics, 2015. 14(1): p. 109-19. 32. Reindl, J., et al., Proteomic biomarkers for psoriasis and psoriasis arthritis. J Proteomics, 2016. 140: p. 55-61. 33. Kramer, A., et al., Causal analysis approaches in Ingenuity Pathway Analysis. Bioinformatics, 2014. 30(4): p. 523-30. 34. Mi, H., et al., PANTHER version 11: expanded annotation data from Gene Ontology and Reactome pathways, and data analysis tool enhancements. Nucleic Acids Res, 2017. 45(D1): p. D183-D189. 35. Ashburner, M., et al., Gene ontology: tool for the unification of biology. The Gene Ontology Consortium. Nat Genet, 2000. 25(1): p. 25-9. 36. The Gene Ontology, C., Expansion of the Gene Ontology knowledgebase and resources. Nucleic Acids Res, 2017. 45(D1): p. D331-D338. 37. Gaudet, P., et al., Phylogenetic-based propagation of functional annotations within the Gene Ontology consortium. Brief Bioinform, 2011. 12(5): p. 449-62. 38. Schlicker, A., et al., A new measure for functional similarity of gene products based on Gene Ontology. BMC Bioinformatics, 2006. 7: p. 302. 39. Supek, F., et al., REVIGO summarizes and visualizes long lists of gene ontology terms. PLoS One, 2011. 6(7): p. e21800. 40. Shannon, P., et al., Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res, 2003. 13(11): p. 2498-504. 41. Cline, M.S., et al., Integration of biological networks and gene expression data using Cytoscape. Nat Protoc, 2007. 2(10): p. 2366-82. 42. Pundir, S., M.J. Martin, and C. O'Donovan, UniProt Protein Knowledgebase. Methods Mol Biol, 2017. 1558: p. 41-55. 43. UniProt Consortium, T., UniProt: the universal protein knowledgebase. Nucleic Acids Res, 2018. 46(5): p. 2699. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/70582 | - |
| dc.description.abstract | 背景:核心岩藻醣化藉由第八型岩藻醣轉移酶催化,此為體內蛋白質維持正常生理功能的重要步驟。我們過去已知第八型岩藻醣轉移酶在乾癬患者病灶處與非病灶處相比的表現量較高,並且在人類角質細胞第八型岩藻醣轉移酶減量的細胞株中,發現細胞生長受到抑制,另一方面,第八型岩藻醣轉移酶對於細胞凋亡則沒有顯著影響。在此研究中,我們希望能透過蛋白質組學,來探索人類角質細胞中與核心岩藻醣化蛋白相關的生物功能,並進一步探索在人類角質細胞中重要的核心岩藻醣化標的蛋白。研究方法:在人類角質細胞細胞株HaCaT的培養過程中,以穩定同位素標記胺基酸,以便在後續的質譜儀分析區分野生型HaCaT、及第八型岩藻醣轉移酶減量的HaCaT,透過小扁豆凝集素將核心岩藻醣化蛋白富集化,接著以胰蛋白酶及PNGase F切割成胜肽,並以液相層析串聯質譜儀分析,透過Mascot搜尋引擎比對鑑別蛋白質,再以Proteome Discoverer計算出各別蛋白質在兩組HaCaT之間的表現量比值。研究結果:在野生型HaCaT及第八型岩藻醣轉移酶減量的HaCaT之間,總計有233個蛋白質有核心岩藻醣化程度的差異,其中45個蛋白質在第八型岩藻醣轉移酶減量的HaCaT表現量上升兩倍以上,46個蛋白質在第八型岩藻醣轉移酶減量的HaCaT表現量則下降兩倍以。針對這些蛋白質以Ingenuity Pathway Analysis進行下游效應分析,與這些蛋白最顯著相關的生物功能中,「細胞間的訊息傳遞與交互作用」、「細胞發育」、「細胞生長與增殖」預期活化狀態將會減少,相對地,「細胞死亡與存活」預期活化的狀態則會增加。此外,我們以PANTHER進行Gene Ontology富集分析,再透過REVIGO的演算法將語意相近而冗餘的Gene Ontology剔除,當simRel設定為預設值0.7時,861個顯著相關的Gene Ontology可進一步縮減為216個,我們將這些Gene Ontology再以Cytoscape做視覺化的網絡呈現,得到顯著相關的生物功能與Ingenuity Pathway Analysis分析結果相似。最後利用Ingenuity Pathway Analysis,探索在野生型HaCaT及第八型岩藻醣轉移酶減量的HaCaT表現量有差異的核心岩藻醣化蛋白,並以圖形呈現這些蛋白彼此之間的關聯性,我們發現,表皮生長因子受體及整合素beta-1皆為可能的重要核心岩藻醣化標的蛋白。結論:在本研究中,我們使用兩套不同的蛋白質組學分析方法,均得到類似的分析結果,在人類角質細胞中核心岩藻醣化與細胞生長及增殖顯著相關,且此生物功能的活化狀態預期會隨著第八型岩藻醣轉移酶減量而下降,這與我們先前的研究結論一致,而表皮生長因子受體為細胞生長及增殖相關的重要核心岩藻醣化標的蛋白。在此研究中,我們以人類角質細胞的細胞株作為疾病模型,預期能更佳地反映人體內的真實狀況,而透過系統生物學,能以更宏觀而有更效率的方式,探討與岩藻醣化蛋白相關的生物功能及標的蛋白。 | zh_TW |
| dc.description.abstract | Introduction: Core-fucosylation is catalyzed by fucosyltransferase 8 (FUT8) and is essential for protein function. Upregulation of FUT8 expression has been observed in the epidermis of lesion sites compared with non-lesion sites in patients with psoriasis. Our previous studies have demonstrated FUT8-knockdown in human keratinocytes cell line HaCaT inhibited cell proliferation while FUT8 expression level had no influence on cells apoptosis. In this study, we aimed to investigate the biological functions of core-fucosylated glycoproteins and potential significant targets of core-fucosylation in human keratinocytes using proteomic approach. Materials and Methods: Wild type and FUT8-knockdown HaCaT clones were cultured with stable isotope labeling by amino acids (SILAC) to differentiate the mass spectrometry peaks from each other. The core-fucosylated glycoproteins were enriched by lens culinaris agglutinin (LCA) and digested by trypsin and Peptide:N-Glycosidase F (PNGase F). These enriched peptides were analyzed by liquid chromatography tandem mass spectrometry (LC/MS/MS). Protein identification and relative abundance quantification were performed using Proteome Discoverer v 1.4.1.14 (Thermo Fisher Scientific, Germany). The MS/MS spectra were searched with the Mascot engine (Matrix Science, USA) against the UniProtKB/Swiss-Prot human database to generate the peak lists. Results: A total of 233 proteins showed different levels of fucosylation between FUT8-knockdown and wild type HaCaT clones. Among them, 45 up-regulated proteins and 46 down-regulated proteins showed fold changes greater than two. We performed downstream effects analysis for these differentially expressed proteins which had fold changes greater than two using Ingenuity Pathway Analysis (IPA) (Qiagen, Germany). P-values were calculated using Fisher’s exact test to determine whether the overrepresentation was significant. The activation z-score was used to infer the presumptive activation state of implicated biological functions. The “Cell-to-cell signaling and interaction”, “Cellular development” and “Cellular growth and proliferation” were predicted to be inactivated. In contrast, the “Cell death and survival” was predicted to be activated. We also conducted gene ontology (GO) enrichment analysis for the differentially expressed proteins with fold changes greater than two using PANTHER (Thomas lab at the University of Southern California, USA). The significance of overrepresentation was determined by binomial test. The differentially expressed proteins were significantly enriched in 861 GO terms. REVIGO (Rudjer Boskovic Institute, Croatia) was further utilized to summarize the list of GO terms by finding representative subsets of GO terms using semantic similarity measure simRel and clustering algorithm. The cut-off value of simRel was set to be 0.7. The 216 non-redundant GO terms were visualized in Cytoscape (National Institute of General Medical Science, USA) in semantic similarity-based network graphs. The clusters of these GO terms were in line with those enriched biological functions identified from IPA. The relationships among core-fucosylated glycoproteins were visualized and investigated using IPA. According to the Ingenuity Knowledge Base, the epidermal growth factor receptor (EGFR) and integrin beta-1 (ITGB1) were the potential targets of core fucosylation in HaCaT. Conclusions: The two analytical methods showed similar enriched biological functions. Using proteomic approach, cellular growth and proliferation was significantly enriched with decreased activation in FUT8-knockdown HaCaT clones, which was consistent with our previous findings. EGFR was the significant core-fucosylated target involved in keratinocytes growth and proliferation. The study of system biology with LCA-enriched glycoproteins in disease model may better reflect the real condition in human bodies. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-17T04:31:42Z (GMT). No. of bitstreams: 1 ntu-107-R04849038-1.pdf: 1363140 bytes, checksum: b3fe4fba527d160a54c26cf9cb00742c (MD5) Previous issue date: 2018 | en |
| dc.description.tableofcontents | 致謝 i
中文摘要 ii 英文摘要 iv 目錄 vii 圖目錄 ix 表目錄 x 1. Introduction 1 1.1 Fucosylation 1 1.2 Psoriasis 2 1.3 FUT8 expression and psoriasis 3 1.4 Previous proteomic studies in psoriasis 5 2. Specific aims 7 3. Materials and methods 8 3.1 HaCaT clones 8 3.2 Preparation of samples for LC/MS/MS 8 3.3 LC/MS/MS analysis 9 4. Results 12 4.1 Downstream effects analysis in Ingenuity® Pathway Analysis (IPA) 12 4.1.1 Ingenuity® Knowledge Base 12 4.1.2 Dataset overview for downstream effects analysis in IPA 13 4.1.3 Downstream effects analysis in IPA 13 4.1.4 Results of downstream effects analysis in IPA 15 4.2 Gene ontology (GO) enrichment analysis in PANTHER 16 4.2.1 PANTHER 16 4.2.2 Dataset overview for GO enrichment analysis in PANTHER 18 4.2.3 Results of GO enrichment analysis in PANTHER 18 4.2.4 REVIGO 18 4.2.5 Cytoscape 20 4.3 Potential significant targets of core fucosylation 21 4.3.1 Connectivity map illustrated in Ingenuity® Pathway Analysis (IPA) 21 4.3.2 Results of investigation of significant targets of core fucosylation 22 5. Discussions 24 5.1 Main findings 24 5.2 Strengths and limitations 26 6. References 27 7. Figures 33 8. Tables 41 | |
| dc.language.iso | en | |
| dc.subject | 乾癬 | zh_TW |
| dc.subject | 人類角質細胞 | zh_TW |
| dc.subject | 第八型岩藻醣轉移? | zh_TW |
| dc.subject | 下游效應分析 | zh_TW |
| dc.subject | 基因本體富集分析 | zh_TW |
| dc.subject | 細胞生長與增殖 | zh_TW |
| dc.subject | 表皮生長因子受體 | zh_TW |
| dc.subject | Psoriasis | en |
| dc.subject | Cellular proliferation | en |
| dc.subject | Epidermal growth factor receptor | en |
| dc.subject | Fucosyltransferase 8 | en |
| dc.subject | Gene ontology | en |
| dc.subject | HaCaT | en |
| dc.subject | Ingenuity Pathway Analysis | en |
| dc.title | 以蛋白質組學探索人類角質細胞核心岩藻醣化相關之生物功能 | zh_TW |
| dc.title | Using Proteomic Approach to Investigate the Biological Functions of Core-fucosylated Targets in Human Keratinocytes | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 106-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 沈志陽,盧子彬,陳璿宇,李玲慧 | |
| dc.subject.keyword | 乾癬,人類角質細胞,第八型岩藻醣轉移?,下游效應分析,基因本體富集分析,細胞生長與增殖,表皮生長因子受體, | zh_TW |
| dc.subject.keyword | Cellular proliferation,Epidermal growth factor receptor,Fucosyltransferase 8,Gene ontology,HaCaT,Ingenuity Pathway Analysis,Psoriasis, | en |
| dc.relation.page | 46 | |
| dc.identifier.doi | 10.6342/NTU201802518 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2018-08-13 | |
| dc.contributor.author-college | 公共衛生學院 | zh_TW |
| dc.contributor.author-dept | 流行病學與預防醫學研究所 | zh_TW |
| 顯示於系所單位: | 流行病學與預防醫學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-107-1.pdf 未授權公開取用 | 1.33 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
