Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 應用力學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/70569
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor郭茂坤
dc.contributor.authorMao-Chang Huangen
dc.contributor.author黄茂昌zh_TW
dc.date.accessioned2021-06-17T04:31:20Z-
dc.date.available2023-08-15
dc.date.copyright2018-08-15
dc.date.issued2018
dc.date.submitted2018-08-11
dc.identifier.citation[1] S. J. Park, T. A. Taton, and C. A. Mirkin, “Array-based electrical detection of DNA with nanoparticle probes,” Science 295, 1503-1505, 2002.
[2] J. J. Storhoff, A. A. Lazarides, R. C. Mucic, C. A. Mirkin, R. L. Letsinger, and G. C. Schatz, “What controls the optical properties of DNA-linked gold nanoparticle as¬semblies,” J. Am. Chem. Soc. 120, 4640-4650, 2001.
[3] K. L. Kelly, A. A. Lazarides, and G. C. Schatz, “Computational electromagnetics of metal nanoparticles and their aggregates,” IEEE Comp. Sci. Engi. 3, 67-73, 2001.
[4] X. Huang, H. Ivan, W. Qian, and A. Mostafa, “Cancer cell imaging and photothermal therapy in the near-infrared region by using gold nanorods,” J. Am. Chem. Soc. 128, 2115-2120, 2006.
[5] J. J. Mock, M. Barbic, D. R. Smith, D. A. Schultz, and S. Schultz, “Shape effects in plasmon resonance of individual colloidal silver nanoparticles,” J. Chem. Phy. 116, 6755-6759, 2002.
[6] E. Dvjardin, L. B. Hsin, C. R. C. Wang, and S. Mann, “DNA-driven self-assembly of gold nanorods,” Chem. Comm. 14, 1264-1265, 2001.
[7] H. Xu, E. J. Bjerneld, and M. Kall, “Spectroscopy of single hemoglobin molecule by surface-enhanced Raman scattering,” Phys. Rev. Lett. 22, 4357-4360, 1999.
[8] S. S. Chang, and C. R. C. Wang, “The synthesis and absorption spectra of several metal nanoparticle systems,” Chem. 56, 209-222, 1998.
[9] C. F. Bohern, and D. R. Huffman, “Absorption and Scattering of Light by Small Particles,” Wiley, New York, 1983.
[10] U. Kreibig, and M. Vollmer, “Optical Properties of Metal Cluster,” Springer Verlag, Berlin, 1995.
[11] X. Haung, Ivan H. El-Sayed, W. Qian, and M. A. El-Sayed, “Cancer Cells Assemble and Align Gold Nanorods Conjugated to Antibodies to Produce Highly Ehnhanced, Sharp, and Polarized Surface Raman Spectra: A Potential Cancer Diagnostic Marker,” Nano. Lett. 7, 1591-1597, 2007
[12] V. M. Agranovich, and D . L. Mills, “Surface Polaritons Electromagnetic at Surfaces and Interfaces,” North-Holland, New York, 1982.
[13] R. H. Ritchie, “Plasma losses by fast electrons in thin films,” Phys. Rev. 106, 874, 1957.
[14] W. L. Barnes, A. Dereux, T. W. Ebbesen, Surface plasmon subwavelength optics, Nature, 424,824-830, 2003.
[15] D. L. Mills, and E. Burstein, “Polaritons,” Pergamon, New York, 1974.
[16] J. P. Barton, D. R. Alexander, and S . A. Schaub, “Theoretical determination of net radiation force and torque for a spherical particle illuminated by a focused laser beam,” J. Appl. Phys. 66, 4594-4602, 1989.
[17] M. L. Juan, M. Righini, and R. Quidant, “Plasmon nano-optical tweezers,” Nat. Photonics, 5, 349-356, 2011
[18] K. Dholakia, P. Reece, and M . Gu, “Optical micromanipulation,” Chem. Soc. Rev. 37, 42-55, 2007.
[19] R. Saija, P. Denti, F. Borghese, O. M. Marago, and M. A. Iati, “Optical trapping calculations for metal nanoparticles. Comparison with experimental data for Au and Ag spheres.” Optics Express, 17, 10231-10241, 2009.
[20] K. C. Toussaint, M. Liu, M. Pelton, J. Pesic, M. J. Guffey, P. Guyot-Sionnest, and N. F. Scherer, “Plasmon resonance-based optical trapping of single and multiple Au nanoparticles,” Optics Express, 15, 12017-12029, 2007.
[21] R. Kumar, D. S. Mehta, and C. Shakher, “Clustering of optically trapped large diameter plasmonic gold nanoparticles by laser beam of hybrid-TEM11 mode,” J. Nanophotonics, 5, 053511, 2011.
[22] S. H. Simpson, and S. Hanna, “Orbital motion of optically trapped particles in Laguerre-Gaussian beams,” Opt. Soc. Am. A. 27, 2061-2071, 2010.
[23] L. Tong, V. D. Miljkovic, and M. Kall, “Alignment, rotation, and spinning of single plasmonic nanoparticles and nanowires using polarization dependent optical forces,” Nano Lett. 10, 268-273, 2010.
[24] L. Ling, H. L. Guo, X. L. Zhong, L. Huang, J. F. Li, L. Gan, and Z. Y. Li, “Manipulation of glod nanorods with dual-optical tweezers for surface plasmon resonance control,” Nanotechnology 23, 215302, 2012.
[25] O. M. Maragò, P. H. Jones, P. G. Gucciardi, G. Volpe, and A. C. Ferrari, “Optical trapping and manipulation of nanostructures,” Nat. Nanotech. 8, 807–819, 2013.
[26] X. Li, T. H. Lan, C. H. Tien, and M. Gu, “Three-dimensional orientation-unlimited polarization encryption by a single optically configured vectorial beam,” Nat. Commun. 3, 998, 2012.
[27] A. Lehmuskero, R. Ogier, T. Gschneidtner, P. Johansson, and M. Käll, “Ultrafast spinning of gold nanoparticles in water using circularly polarized light,” Nano Lett. 13, 3129−3134, 2013.
[28] Z. Yan, and N. F. Scherer, “Optical vortex induced rotation of silver nanowires,” J. Phys. Chem. Lett. 4, 2937−2942, 2013.
[29] Z. Yan, M. Pelton, L. vigderman, E. R. Zubarev, and N. F. Scherer, “Why single-beam optical tweezers trap gold nanowires in three dimensions,” ACS Nano 7, 8794-8800, 2013.
[30] P. Zijlstra, M. van Stee, N. Verhart, Z. Gu, and M. Orrit, “Rotational diffusion and alignment of short gold nanorods in an external electric field,” Phys. Chem. Chem. Phys. 14, 4584-4588, 2012.
[31] W. Ma, H. Kuang, L. Xu, L. Ding, C. Xu, L. Wang, and N. A. Kotov, “Attomolar DNA detection with chiral nanorod assemblies,” Nat. Commun. 4, 2689, 2013.
[32] J. W. Liaw, W. J. Lo, and M. K. Kuo, “Wavelength-dependent longitudinal polarizability of gold nanorod on optical torque,” Opt. Express 22, 10858−10867, 2014.
[33] K. Chaudhari, and T. Pradeep, “Optical rotation by plasmonic circular dichroism of isolated gold nanorod aggregates,” Applied Physics Lett. 105 (20), 203105, 2014.
[34] V. Demergis, E. L. Florin, “Ultrastrong optical binding of metallic nanoparticles,” Nano Lett. 12, 5756–5760, 2012.
[35] Z. Yan, R. A. Shah, G. Chado, S. K. Gray, M. Pelton and N. F. Scherer, “Guiding spatial arrangements of silver nanoparticles by optical binding interactions in shaped light fields,” ACS Nano. 7, 1790–1802, 2013.
[36] Z. Yan, U. Manna, W. Qin, A. Camire, Phi. Guyot-Sionnest, and N. F. Scherer, “Hierarchical Photonic Synthesis of Hybrid Nanoparticle Assemblies,” J. Phys. Chem. Lett. 4, 2630−2636, 2013.
[37] Z. Yan, S. K. Gray, and N. F. Scherer, “Potential energy surfaces and reaction pathways for light-mediated self-organization of metal nanoparticle clusters,” Nat. Commun. 5, 3517.
[38] 郭廷祐,金銀奈米粒子之光束縛力,國立台灣大學應用力學研究所碩士論文,2015.
[39] 趙學昱,金奈米粒子在平面波照射下的遠距離穩定與近距離結合,國立台灣大學應用力學研究所碩士論文,2016.
[40] A. Yevick, D. J. Evans, and D. G. Grier, “Photokinetic analysis of the forces and torques exerted by optical tweezers carrying angular momentum,” Phil. Trans. R. Soc. A, 375 (2087), 2017.
[41] N. Sule, Y. Yifat, S. K. Gray, and N. F. Scherer, “Rotation and Negative Torque in Electrodynamically Bound Nanoparticle Dimers,” Nano lett. 17 (11), 6548-6556, 2017.
[42] D. J. Griffiths, “Introduction to Electrodynamics,” Prentice Hall, New Jersey, 1996.
[43] J. A. Stratton, “Electromagnetic Theory,” McGraw Hill, New York, 1941.

[44] 林吳駿,光誘導的雙金桿之方向性附著,國立台灣大學應用力學研究所碩士論文,2015.
[45] K. T. Mcdonald, “Total and frustrated reflection of a gaussian optical beam,” Joseph Henry Laboratories, Princeton University, 2009.
[46] Z. Li, M. Käll, and H. Xu, “Optical forces on interacting plasmonic nanoparticles in a focused Gaussian beam,” Physical Review B, 77 (8), 085412, 2008.
[47] K. Wang, E. Schonbrun, P. Steinvurzel, and K. B. Crozier, “Trapping and rotating nanoparticles using a plasmonic nano-tweezer with an integrated heat sink,” Nature communications, 2, 469, 2011.
[48] K. Y. Bliokh, D. Smirnova, and F. Nori, “Quantum spin Hall effect of light,” Science, 348 (6242), 1448-1451, 2015.
[49] C. Triolo, A. Cacciola, S. Patanè, R. Saija, S. Savasta, and F. Nori,”Spin-Momentum Locking in the Near Field of Metal Nanoparticles,” ACS Photonics, 4 (9), 2242-2249, 2017.
[50] Z. Shen, and L. Su, “Plasmonic trapping and tuning of a gold nanoparticle dimer,” Optics Express, 24 (5), 4801-4811, 2016.
[51] J. W. Liaw, Y. S. Chen, and M. K. Kuo, “Spinning gold nanoparticles driven by circularly polarized light,” J. Quant. Spectrosc. Radiat. Transfer 175, 46-53 (2016)
[52] 羅為駿,金、銀奈米桿之光學與力學特性研究,國立台灣大學應用力學研究所碩士論文,2014.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/70569-
dc.description.abstract本文數值模擬分為三類:(1) 一自由奈米粒子與一固定奈米金屬粒子(三維運動),(2) 雙顆與三顆自由奈米金屬粒子,(3) 多顆奈米金桿在高斯光束(Gaussian beam)線性與圓形極化下之光學行為,使其金屬粒子產生表面電漿共振(surface plasmon resonance;SPR),採數值理論多重中心展開法(multiple-multipole expansions method)計算電磁場,藉由Maxwell應力張量計算奈米粒子光力與光力矩,同時引進流線(streamline),將部分數值結果分析2D/3D視覺化,探討自由與固定一金屬奈米粒子之三維光學行為、雙顆與三顆奈米金屬粒子之軸向公轉與側向自旋運動與多顆金桿之結合或穩定平衡運動。
本研究發現一自由與一固定奈米金屬粒子在高斯光束照射下,所產生光學行為為三維運動,其多數實驗者只觀察到部分行為,而本文將光學運動行為分為接觸模式(contact mode)與非接觸模式(non-contact mode),觀察其奈米粒子之流線(streamline),發現其自由奈米粒子之運動行為非常複雜。
雙顆與三顆自由奈米金屬粒子在高斯光束照射下,因電磁場之扭曲,造成奈米金屬粒子逆向公轉與傾自轉軸之自旋。相較於平面波之光源,其改變高斯光束之帶寬可決定公轉之方向與自旋光力矩之大小。
多顆奈米金桿之結合或穩定平衡運動,在入射波長接近長軸表面電漿子共振特性(longitudinal surface plasmon resonance ; LSPR)時,多顆奈米金桿在線性極化下會以頭尾相接(end-to-end)或並排結合(side-by-side);若在圓形極化時,則各自排開產生公轉與自旋。
zh_TW
dc.description.abstractThe numerical results of this article are divided into three parts. The first section is a free nanoparticle and a fixed metallic nanoparticle, the second is orbit-spin interation of two or three free nanoparticles, and the last is analyzing optomechanics of multiple nanorods irradiated by linear-polarized or circular-polarized focused Gaussian beam. The Surface of the metallic nanoparticle will produce surface plasmon resonance (SPR). We use both Multiple-Multipole expansions method (MMP) and Maxwell stress tensor to express optical force and optical torque analysis. At the same time, the streamline is introduced to plot some partially numerical results via 2D/3D visualization in order to discuss optical motions, inclusive of a free and a fixed metal nanoparticles, longitudinal orbit and transverse spin torque among two and three metal nanoparticles, and the interactions or stable interactions among a lot of Au nanorods.
This article has found that a free and fixed metal nanoparticles irradiated by Gaussian beam can be regarded as three-dimensional motions. Most experimenters only happen to observe partial motions, and the results of optical motions will be divided into two modes, defined as contact mode and noncontact mode. According to observing streamlines of the free nanoparticle, it is obvious that optical motions of the free nanoparticle are extremely complicated.
Due to the twisted electromagnetic field, two and three free nanoparticles irradiated by linearly or circularly polarized focused Gaussian beam result in negative orbital torque and transverse spin torque. Compared to plane wave, the direction of orbital torque and the magnitude of spin toque can be determined by changing the waist width of Gaussian beam.
In the case of interaction or stable motions, when the incident wavelength is close to the longitudinal surface plasmon resonance (LSPR), many Au nanorods in linear polarization would interact in ways of end-to-end or side-by-side modes; if in circle polarization, they will repel and form orbital-spin motions.
en
dc.description.provenanceMade available in DSpace on 2021-06-17T04:31:20Z (GMT). No. of bitstreams: 1
ntu-107-R05543008-1.pdf: 10246048 bytes, checksum: 9cb7da0ffafe1fd0a2cacf17207879e9 (MD5)
Previous issue date: 2018
en
dc.description.tableofcontents致謝 i
摘要 ii
Abstract iii
目錄 v
圖目錄 vii
第1章 緒論 1
1.1 前言 1
1.2 文獻回顧 2
1.3 本文內容 5
第2章 電磁理論與數值分析方法 6
2.1 高斯光束(Gaussian Beam) [34] 6
2.2 Maxwell應力張量相關之電磁理論 8
第3章 數值結果與分析 9
3.1 自由奈米粒子與單一金屬球之光學行為 9
3.1.1 高折射率粒子與單一金屬球結構 11
3.1.1.1 線性偏極光 11
3.1.1.2 圓形偏極光 18
3.1.2 金球與單金球結構 24
3.1.2.1 線性偏極光 24
3.1.2.2 圓形偏極光 26
3.2 雙顆與三顆奈米金屬球之光學行為 30
3.2.1 線性偏極光 31
3.2.2 圓形偏極光 38
3.3 多顆奈米金桿之光學行為 45
3.3.1 線性偏極光 46
3.3.1.1 相同尺寸 46
3.3.1.2 不同尺寸 48
3.3.2 圓形偏極光 51
3.3.2.1 相同尺寸 51
3.3.2.2 不同尺寸 53
第4章 結論與未來展望 55
參考文獻 58
附錄一 MMP擺點 140
dc.language.isozh-TW
dc.title金屬奈米結構在高斯光束下之光力學分析zh_TW
dc.titleOptomechanics of Metal Nanostructures Irradiated by Gaussian Beamen
dc.typeThesis
dc.date.schoolyear106-2
dc.description.degree碩士
dc.contributor.coadvisor廖駿偉
dc.contributor.oralexamcommittee鄧崇任
dc.subject.keyword二維/三維流線,接觸與非接觸模式,逆軸向公轉,側向自旋,多聚體結合,zh_TW
dc.subject.keyword2D/3D streamline,contact and noncontact mode,negative orbital torque,transverse spin torque,interaction among nanoparticles,en
dc.relation.page140
dc.identifier.doi10.6342/NTU201802731
dc.rights.note有償授權
dc.date.accepted2018-08-13
dc.contributor.author-college工學院zh_TW
dc.contributor.author-dept應用力學研究所zh_TW
顯示於系所單位:應用力學研究所

文件中的檔案:
檔案 大小格式 
ntu-107-1.pdf
  目前未授權公開取用
10.01 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved