Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 電機資訊學院
  3. 電信工程學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/70561
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor謝宏昀(Hung-Yun Hsieh)
dc.contributor.authorTzu-Wei Huangen
dc.contributor.author黃梓維zh_TW
dc.date.accessioned2021-06-17T04:31:07Z-
dc.date.available2023-08-28
dc.date.copyright2020-09-16
dc.date.issued2020
dc.date.submitted2020-08-31
dc.identifier.citation[1] B. A. Renfro, “An analysis of global positioning system (GPS) standard positioning service (SPS) performance for 2017,” 2018.
[2] G. Shen, R. Zetik, and R. S. Thoma, “Performance comparison of TOA and TDOA based location estimation algorithms in LOS environment,” 2008 5th Workshop on Positioning, Navigation and Communication, vol. 8, 2008.
[3] A. Catovic and Z. Sahinoglu, “The Cramer-Rao Bounds of Hybrid TOA/RSS and TDOA/RSS Location Estimation Schemes,” vol. 4, 2004.
[4] N. Mattern and G. Wanielik, “Vehicle Localization in Urban Environments using Feature Maps and Aerial Images,” vol. 6, 2011.
[5] H. Kume, A. Supp´e, and T. Kanade, “Vehicle localization along a previously driven route using image database,” vol. 4, 2013.
[6] G. F. Olivier and P. Michel, “Laser scanner-based SLAM in real road and traffic environment,” 2011.
[7] W. Burgard, O. Brock, and C. Stachniss, Map-Based Precision Vehicle Localization in Urban Environments. MITP, 2008.
[8] J.-S. Chen, “Handling Position Uncertainty for Cooperative Localization in V2X Communications Based on Bayesian Filtering,” 2019.
[9] Z. Meng, Z.-Z. Pan, D.-Y. Sun, and S. Liu, “Data segmentation and augmentation methods based on raw data using deep neural networks approach for rotating machinery fault diagnosis,” IEEE Access, vol. 13, pp. 79510-79522, 2019.
[10] F.-Y. Xie, H. Wen, J.-S. Wu, W.-J. Hou, H.-H. Song, and T.-Y. Zhang, “Data augmentation for radio frequency fingerprinting via pseudo-random integration,” IEEE Transactions on Emerging Topics in Computational Intelligence, vol. 11, 2019.
[11] C. T. Chiang, P. H. Tseng, and K. T. Feng., “Hybrid TOA-TDOA based unified Kalman tracking algorithm for wireless networks,” 21st Annual IEEE International Symposium on Personal, Indoor and Mobile Radio Communications, 2010.
[12] G. M. Reza, S. Gezici, and E. G. Strom, “Improved position estimation using hybrid TW-TOA and TDOA in cooperative networks,” IEEE Transactions on Signal Processing, pp. 3770-3785, 2012.
[13] A. Gholoobi and S. Stavrou, “A hybrid TDoA/ToA localization method,” ICT, IEEE, pp. 1-4, 2013.
[14] R. Fujiwara, K. Mizugaki, T. Nakagawa, D. Maeda, and M. Miyazaki, “TOA/TDOA hybrid relative positioning system using UWB IR,” In 2009 IEEE Radio and Wireless Symposium,IEEE, pp. 679-682, 2009.
[15] A. Coluccia and A. Fascista, “Hybrid TOA/RSS Range Based Localization with Self-Calibration in Asynchronous Wireless Networks,” Journal of Sensor and Actuator Networks, 2019.
[16] S. Kim, S. H. Jang, and J. W. Chong, “Hybrid RSS/TOA wireless positioning with a mobile anchor in wireless sensor networks,” Proceedings of the 6th International Conference on Ubiquitous Information Management and Communication, 2012.
[17] A. Shahrokh, N. Zhou, and Z. Huang, “Adaptive adjustment of noise covariance in Kalman filter for dynamic state estimation,” 2017 IEEE power energy society general meeting. IEEE, 2017.
[18] H. Xiong, J. Tang, H. Xu, W. Zhang, and Z. Du, “A robust single GPS navigation and positioning algorithm based on strong tracking filtering,” IEEE Sensors Journal, pp. 290-298, 2017.
[19] L. Heng, G. X. Gao, T. Walter, and P. Enge, “Statistical characterization of GPS signal-in-space errors,” In Proceedings of the 2011 International Technical Meeting of the Institute of Navigation, vol. 8, pp. 312-319, 2011.
[20] E. A. Abdellah and N. Samanta, “A Modeling of GPS Error Distributions,” 2017 European Navigation Conference, vol. 9, pp. 119-127, 2017.
[21] Y. Zou and Q. Wan, “Asynchronous time-of-arrival-based source localization with sensor position uncertainties,” IEEE Communications Letters 20.9, vol. 4, pp. 1860-1863, 2016.
[22] R. M. Vaghfi and R. M. Buehrer, “Asynchronous time-of-arrival-based source localization,” 2013 IEEE International Conference on Acoustics, Speech and Signal Processing, vol. 5, pp. 4086-4090, 2013.
[23] Z.-L. Zheng, J.-Y. Hua, Y.-A. Wu, H. Wen, and L.-M. Meng, “Time of arrival and time sum of arrival based NLOS identification and localization,” 2012 IEEE 14th International Conference on Communication Technology, vol. 5, pp. 1129-1133, 2012.
[24] A. Mahmood, M. I. Ashraf, M. Gidlund, J. Torsner, and J. Sachs, “Time synchronization in 5G wireless edge: Requirements and solutions for critical-MTC,” IEEE Communications Magazine, vol. 7, pp. 45-51, 2019.
[25] J. Y. Yoon, J. W. Kim, W. Y. Lee, and D. S. Eom, “A TDoA-based localization using precise time-synchronization,” 2012 14th International Conference on Advanced Communication Technology, vol. 6, pp. 1266-1271, 2012.
[26] G. Tadahiro, K. Akihiro, and S. Yasuhisa, “GPS common view,”Journal of the National Institute of Information and Communications Technology, pp.113-123, 2003.
[27] M. A. Lombardi, “Time and frequency measurements using the global positioning system, “Journal of Metrology, vol. 8, no. 3, pp. 2633, 2001.
[28] D. W. Allan, N. Ashby, and C. C.Hodge, “ The Science of Timekeeping Application, Technical report, Hewlett-Packard, 1997.
[29] K. V. Mardia and R. J. Marshall, “Maximum Likelihood Estimation of Models for Residual Covariance in Spatial Regression,” Biometrika, vol. 12, 1984.
[30] H. V. Henderson and S. R. Searle, “On deriving the inverse of a sum of matrices,” Siam Review, pp. 53-60, 1981.
[31] N. Patwari, A. O.Hero, M. Perkins, N. S. Correal, and R. J. O'Dea, “Relative location estimation in wireless sensor networks,” IEEE Transactions on signal processing, pp. 2137-2148, 2003.
[32] C. Steffes, R. Kaune, S. Rau, and F. Fkie, “Determining Times Of Arrival Of Transponder Signals In A. Sensor Network Using Gps Time Synchronization,” GI-Jahrestagung, 2011.
[33] X.-K. Ye, J. Rodríguez-Piñeiro, Y.-A. Liu, X.-F. Yin, and A. P. Yuste, “A Novel Experiment-Free Site-Specific TDoA Localization Performance-Evaluation Approach,” Sensors, pp. 2137-2148, 2020.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/70561-
dc.description.abstract在 V2V 場景下的合作式定位是一個被廣泛討論的技術,若是各個系統之間能彼此提供可靠的資訊,通過與鄰居共享位置資訊,定位的精準度能提升不少。在本論文中,我們設計了一個結合卡爾曼濾波器與運動,GPS 和到達時間(TOA)的混合模型。在這樣的混合模型之下,我們研究如何增加資訊進入卡爾曼濾波器更新過程以改善有限的定位性能。我們透過 TOA 的原始數據彼此相減生成新的一組到達時間差(TDOA)的測量值,嘗試增加整體系統的資訊以改善定位結果。雖然生成的 TDOA 來自原本就存在的TOA 測量值,但TDOA 測量值通過在卡爾曼濾波器更新過程中使用不同的 Jacobian 矩陣,就像以一種不同視角對系統提供額外的資訊。在卡爾曼濾波器的更新之中,測量值模型的方差會透過影響更新步伐大小來影響整體收斂的結果,在這樣的前提之下,我們透過考慮鄰居的不確定位置資訊來得到一個新的TDOA 模型方差; 而考慮了鄰居不確定位置方差,能為卡爾曼濾波器更新的每個測量值帶來適當的更新步伐大小。最後我們把原始的 TOA 測量值還有生成的 TDOA 測量值一起放進卡爾曼濾波器中更新,模擬的結果顯示,混和兩種測量值的更新效果會比只使用原始TOA 的平均定位效果好 15%。zh_TW
dc.description.abstractCooperative localization for V2V communications are widely be discussed and used in many situations. By sharing position information with neighbors, we could improve the localization performance under the premise of the credible data. In the thesis, we design an localization algorithm using the Kalman lter with the fusion model of motion, GPS and the time of arrival (TOA) measurement. Under such fusion model, we wonder if there is any possible information can be added into the Kalman update process to improve the limited performance. We construct the generated time different of arrival (TDOA) measurement set from the original ranging measurement try to put more information to improve the localization performance. By using different Jacobian matrix in Kalman update process, the generated model provides a different perspective of the original measurement data. However, under the V2V scenario, the ranging measurement TOA is suffered from the uncertain neighbor position so as the generated measurement from TOA. It is well known that the variance of the measurement model have a significant impact on the Kalman filter performance in estimating dynamic states. We modify the variance of the generated measurement model by considering the uncertainty of the neighbor position to give the appropriate update step size for the Kalman filter. After the neighbor uncertainty consideration of the Kalman update process for generated measurement, we put the generated measurement into the non-linear update process together with the original TOA measurement set to form a hybrid ranging measurement update system. The results show that the fusion model with hybrid measurement set can improve the localization performance around 15 % of the average error with the suitable GPS level. The proposed generated measurement with the modified variance can improve the localization performance without other additional communication devices.en
dc.description.provenanceMade available in DSpace on 2021-06-17T04:31:07Z (GMT). No. of bitstreams: 1
U0001-2808202015141400.pdf: 2214428 bytes, checksum: fc37e5489ffeabfb429a084101d6392c (MD5)
Previous issue date: 2020
en
dc.description.tableofcontentsABSTRACT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ii
LIST OF TABLES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . v
LIST OF FIGURES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vi
LIST OF ALGORITHMS . . . . . . . . . . . . . . . . . . . . . . . . . . vii
LIST OF SYMBOLS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . viii
CHAPTER 1 INTRODUCTION . . . . . . . . . . . . . . . . . . . . 1
CHAPTER 2 BACKGROUND AND RELATED WORK . . . . . 4
2.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
2.1.1 Recursive Bayesian estimation . . . . . . . . . . . . . . . . 4
2.1.2 Linear and non-linear model with white Gaussian noise . . 6
2.1.3 Kalman and extended Kalman filter . . . . . . . . . . . . . 8
2.2 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.2.1 Additional information . . . . . . . . . . . . . . . . . . . . 11
2.2.2 Modified Kalman gain . . . . . . . . . . . . . . . . . . . . . 12
CHAPTER 3 SCENARIO AND SYSTEM MODEL . . . . . . . . 14
3.1 Scenario . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
3.2 Motion Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
3.3 Measurement Model . . . . . . . . . . . . . . . . . . . . . . . . . . 17
3.3.1 GPS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
3.3.2 RSS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
3.3.3 TOA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
CHAPTER 4 GENERATED TIME DIFFERENCE OF ARRIVAL MEASUREMENT . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
4.1 Generated Time Difference of Arrival Model . . . . . . . . . . . . 21
4.2 Accuracy Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
4.2.1 Accuracy matrix for TOA and generated measurement . . . 26
4.2.2 Accuracy simulation . . . . . . . . . . . . . . . . . . . . . . 28
CHAPTER 5 PROPOSED ALGORITHM . . . . . . . . . . . . . . 32
5.1 Modified Variance with Uncertain Neighbor Positions . . . . . . . 32
5.1.1 Estimation of neighbor positions . . . . . . . . . . . . . . . 33
5.1.2 Generated measurement variance modification with uncertain neighbor positions . . . . . . . . . . . . . . . . . . . . 35
5.2 Proposed Update Process . . . . . . . . . . . . . . . . . . . . . . . 40
CHAPTER 6 PERFORMANCE EVALUATION . . . . . . . . . . 45
6.1 Simulation Setting and Models . . . . . . . . . . . . . . . . . . . . 45
6.1.1 Performance criteria . . . . . . . . . . . . . . . . . . . . . . 47
6.1.2 Unified unit . . . . . . . . . . . . . . . . . . . . . . . . . . 47
6.2 Simulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
6.2.1 Curve scenario . . . . . . . . . . . . . . . . . . . . . . . . . 48
6.2.2 Uncertain reference position test with generated measurement model . . . . . . . . . . . . . . . . . . . . . . . . . . 49
6.2.3 Measurement data set . . . . . . . . . . . . . . . . . . . . . 53
CHAPTER 7 CONCLUSION AND FUTURE WORK . . . . . . 58
REFERENCES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
dc.language.isoen
dc.subject車載通訊zh_TW
dc.subject合作式定位zh_TW
dc.subjectCooperative localizationen
dc.subjectV2Ven
dc.title不精準資訊下基於到達時間差之合作式車載通訊定位技術zh_TW
dc.titleFurther Consideration of Position Uncertainty for Vehicle-to-Vehicle Cooperative Localization Based on Time Difference of Arrivalsen
dc.typeThesis
dc.date.schoolyear108-2
dc.description.degree碩士
dc.contributor.oralexamcommittee蘇炫榮(Hsuan-Jung Su),馮輝文(Huei-Wen Ferng)
dc.subject.keyword車載通訊,合作式定位,zh_TW
dc.subject.keywordV2V,Cooperative localization,en
dc.relation.page61
dc.identifier.doi10.6342/NTU202004187
dc.rights.note有償授權
dc.date.accepted2020-08-31
dc.contributor.author-college電機資訊學院zh_TW
dc.contributor.author-dept電信工程學研究所zh_TW
顯示於系所單位:電信工程學研究所

文件中的檔案:
檔案 大小格式 
U0001-2808202015141400.pdf
  未授權公開取用
2.16 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved