請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/70542完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 黃筱鈞(Hsiao-Chun Huang) | |
| dc.contributor.author | Pei-Yu Chung | en |
| dc.contributor.author | 鍾佩妤 | zh_TW |
| dc.date.accessioned | 2021-06-17T04:30:37Z | - |
| dc.date.available | 2023-08-16 | |
| dc.date.copyright | 2018-08-16 | |
| dc.date.issued | 2018 | |
| dc.date.submitted | 2018-08-12 | |
| dc.identifier.citation | 1. Attwater, J. and P. Holliger, A synthetic approach to abiogenesis. Nat Methods, 2014. 11(5): p. 495-8.
2. Lim, W.A., Designing customized cell signalling circuits. Nat Rev Mol Cell Biol, 2010. 11(6): p. 393-403. 3. Quarton, T., et al., Mapping the operational landscape of microRNAs in synthetic gene circuits. NPJ Syst Biol Appl, 2018. 4: p. 6. 4. Kim, D.H. and J.J. Rossi, Strategies for silencing human disease using RNA interference. Nat Rev Genet, 2007. 8(3): p. 173-84. 5. Kim, V.N., J. Han, and M.C. Siomi, Biogenesis of small RNAs in animals. Nat Rev Mol Cell Biol, 2009. 10(2): p. 126-39. 6. Lam, J.K., et al., siRNA Versus miRNA as Therapeutics for Gene Silencing. Mol Ther Nucleic Acids, 2015. 4: p. e252. 7. Hwang, A., et al., Cell cycle-dependent regulation of the cyclin B1 promoter. J Biol Chem, 1995. 270(47): p. 28419-24. 8. Yuan, J., et al., Stable gene silencing of cyclin B1 in tumor cells increases susceptibility to taxol and leads to growth arrest in vivo. Oncogene, 2006. 25(12): p. 1753-62. 9. Kawamoto, H., H. Koizumi, and T. Uchikoshi, Expression of the G2-M checkpoint regulators cyclin B1 and cdc2 in nonmalignant and malignant human breast lesions: immunocytochemical and quantitative image analyses. Am J Pathol, 1997. 150(1): p. 15-23. 10. Mashal, R.D., et al., Expression of cell cycle-regulated proteins in prostate cancer. Cancer Res, 1996. 56(18): p. 4159-63. 11. Sherr, C.J., Cancer cell cycles. Science, 1996. 274(5293): p. 1672-7. 12. Katula, K.S., et al., Cyclin-dependent kinase activation and S-phase induction of the cyclin B1 gene are linked through the CCAAT elements. Cell Growth Differ, 1997. 8(7): p. 811-20. 13. Bo-Han, L., A Cascade of Synthetic Logic Gates for Differentiated Anti-mitotic Cancer Therapy. 2016. (Master Thesis, Institute of Molecular and Cellular Biology College of Life Science, National Taiwan University) 14. Landgraf, P., et al., A mammalian microRNA expression atlas based on small RNA library sequencing. Cell, 2007. 129(7): p. 1401-14. 15. Ramkissoon, S.H., et al., Hematopoietic-specific microRNA expression in human cells. Leuk Res, 2006. 30(5): p. 643-7. 16. Islam, F., et al., MiR-142-5p act as an oncogenic microRNA in colorectal cancer: Clinicopathological and functional insights. Exp Mol Pathol, 2018. 104(1): p. 98-107. 17. Shrestha, A., et al., MicroRNA-142 is a multifaceted regulator in organogenesis, homeostasis, and disease. Dev Dyn, 2017. 246(4): p. 285-290. 18. Xie, Z., et al., Multi-input RNAi-based logic circuit for identification of specific cancer cells. Science, 2011. 333(6047): p. 1307-11. 19. Brown, B.D., et al., Endogenous microRNA can be broadly exploited to regulate transgene expression according to tissue, lineage and differentiation state. Nat Biotechnol, 2007. 25(12): p. 1457-67. 20. Das, A.T., L. Tenenbaum, and B. Berkhout, Tet-On Systems For Doxycycline-inducible Gene Expression. Curr Gene Ther, 2016. 16(3): p. 156-67. 21. Gossen, M., et al., Transcriptional activation by tetracyclines in mammalian cells. Science, 1995. 268(5218): p. 1766-9. 22. Moullan, N., et al., Tetracyclines Disturb Mitochondrial Function across Eukaryotic Models: A Call for Caution in Biomedical Research. Cell Rep, 2015. 23. Zhou, X., et al., Optimization of the Tet-On system for regulated gene expression through viral evolution. Gene Ther, 2006. 13(19): p. 1382-90. 24. Wolter, K.G., et al., Movement of Bax from the cytosol to mitochondria during apoptosis. J Cell Biol, 1997. 139(5): p. 1281-92. 25. Miyashita, T., et al., Tumor suppressor p53 is a regulator of bcl-2 and bax gene expression in vitro and in vivo. Oncogene, 1994. 9(6): p. 1799-805. 26. Westphal, D., R.M. Kluck, and G. Dewson, Building blocks of the apoptotic pore: how Bax and Bak are activated and oligomerize during apoptosis. Cell Death Differ, 2014. 21(2): p. 196-205. 27. Bussow, K., Stable mammalian producer cell lines for structural biology. Curr Opin Struct Biol, 2015. 32: p. 81-90. 28. Zeyda, M., et al., Optimization of sorting conditions for the selection of stable, high-producing mammalian cell lines. Biotechnol Prog, 1999. 15(5): p. 953-7. 29. Cockrell, A.S. and T. Kafri, Gene delivery by lentivirus vectors. Mol Biotechnol, 2007. 36(3): p. 184-204. 30. Gonzalez, M., et al., Generation of stable Drosophila cell lines using multicistronic vectors. Sci Rep, 2011. 1: p. 75. 31. Donnelly, M.L., et al., Analysis of the aphthovirus 2A/2B polyprotein 'cleavage' mechanism indicates not a proteolytic reaction, but a novel translational effect: a putative ribosomal 'skip'. J Gen Virol, 2001. 82(Pt 5): p. 1013-25. 32. Mills, E., et al., Engineering a photoactivated caspase-7 for rapid induction of apoptosis. ACS Synth Biol, 2012. 1(3): p. 75-82. 33. Khan, K.H., Gene expression in Mammalian cells and its applications. Adv Pharm Bull, 2013. 3(2): p. 257-63. 34. Rees, S., et al., Bicistronic vector for the creation of stable mammalian cell lines that predisposes all antibiotic-resistant cells to express recombinant protein. Biotechniques, 1996. 20(1): p. 102-4, 106, 108-10. 35. Karbowski, M., et al., Spatial and temporal association of Bax with mitochondrial fission sites, Drp1, and Mfn2 during apoptosis. J Cell Biol, 2002. 159(6): p. 931-8. 36. Ren, J., et al., FAT10 mediates the effect of TNF-alpha in inducing chromosomal instability. J Cell Sci, 2011. 124(Pt 21): p. 3665-75. 37. Yokoyama, K., et al., Rab27a negatively regulates phagocytosis by prolongation of the actin-coating stage around phagosomes. J Biol Chem, 2011. 286(7): p. 5375-82. 38. Benabdellah, K., et al., Development of an all-in-one lentiviral vector system based on the original TetR for the easy generation of Tet-ON cell lines. PLoS One, 2011. 6(8): p. e23734. 39. van Engeland, M., et al., Annexin V-affinity assay: a review on an apoptosis detection system based on phosphatidylserine exposure. Cytometry, 1998. 31(1): p. 1-9. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/70542 | - |
| dc.description.abstract | 微型核醣核酸(microRNA)是一種在轉錄後調節基因表現的非編碼核糖核酸,研究指出miR-142 微型核醣核酸在血液相關細胞株中大量表現。在本研究中,我們利用合成基因迴路建立誘導式細胞凋亡路徑,此迴路包含兩個感應元件:細胞週期素 B1 啟動子(cyclinB1 promoter)及 miR-142 微型核醣核酸結合位點(microRNA binding site,MBS),與一個執行元件:Bcl-2相關X蛋白(hBax protein)。hBax之功能為促進細胞色素c (cytochrome C)釋放進而活化凋亡蛋白酶(caspase),引發細胞凋亡。此基因迴路經邏輯匣判斷後會在非血液相關細胞株中引發細胞凋亡,而在血液相關細胞株中因有微型核醣核酸結合至微型核醣核酸結合位點,引發核糖核酸干擾(RNA interference, RNAi),並不會發生細胞凋亡。經實驗證實miR-142-5p比起miR-142-3p在血液細胞株中有更專一之抑制效果,我們藉此以miR-142-5p建立完整的合成基因迴路,並在非血液細胞株中引發至少30%之細胞凋亡。本研究藉由合成生物學跨領域之應用,建立體外實驗中能標定並殺死非血液腫瘤細胞之合成基因迴路,也為標靶基因治療提供了基礎概念驗證及具潛力之新方向。 | zh_TW |
| dc.description.abstract | MicroRNAs are a class of small non-coding RNAs that regulate the gene-silencing process at the post-transcriptional level. Evidence indicates that miR-142 is highly expressed in hematopoietic cell lines. This study employed a synthetic biological circuit that can trigger apoptosis after doxycycline induction. The device contains two sensors: one is an inducible cyclin B1 promoter-driven Tet-On 3G system, and the other is a synthetic miR-142 microRNA binding site (miR-142 MBS) added to the 3'-untranslated region (3'-UTR) of the device’s output signal, human BAX protein (hBax). hBax is a member of the Bcl-2 gene family, which functions as an apoptotic activator of cytochrome C release and caspase activation. The circuit, comprising an biological AND gate, simultaneously senses the initiation of cell division and cell identity, and then triggers the expression of the toxic signal that specifically kills non-hematopoietic cells. The endogenous miR-142 in hematopoietic cells will bind to the mRNA of apoptotic genes of the circuit, and thus prevent apoptosis in the hematopoietic cells. By contrast, activation of the hBax gene leads to an apoptotic cascade in non-hematopoietic cells. Furthermore, our study reveals that miR-142-5p has higher repression efficiency in hematopoietic cancer cell lines (HL-60, Jurkat and CCRF-CEM) than miR-142-3p does. We therefore established our device using miR-142-5p. We also demonstrate that there are at least 30% of cells result in apoptosis in non-hematopoietic cancer cell lines (HeLa, HCT116 and U2OS). We are currently assembling the two sensors and the effector to realize the synthetic circuit that can differentially target non-hematopoietic cancer cell lines. This study provides a basis proof-of-concept for targeted gene therapy. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-17T04:30:37Z (GMT). No. of bitstreams: 1 ntu-107-R05b43035-1.pdf: 8218439 bytes, checksum: 316ae3a25669fbed2d0eb8534e70fa36 (MD5) Previous issue date: 2018 | en |
| dc.description.tableofcontents | 口試委員審定書 I
致謝 II 摘要 IV ABSTRACT V CONTENT VI FIGURE LIST VIII CHAPTER 1 INTRODUCTION 1 1.1 Applications of Synthetic Biology and microRNA Therapeutics 1 1.2 Conception of the Circuit Design 2 1.3 Improvements of Low Transfection Efficiency in Hematopoietic Cell Lines and Low Death Rate in A549 Cell Line 5 1.4 Project Purpose 6 CHAPTER 2 MATERIALS AND METHODS 8 2.1 Recombinant DNA Construction 8 2.1.1 Bacterial Strain and Vectors 8 2.1.2 Oligonucleotide Sequences for Construction 9 2.1.3 Reagents and Enzymes 11 2.2 Cell Lines and Cell Culture 12 2.3 Delivery of Plasmid DNA into Mammalian Cells 13 2.3.1 Liposome-mediated Transfection 14 2.3.2 Electroporation 14 2.4 Drugs Treatment 15 2.5 Fluorescence Microscopy and Time-lapse Imaging 15 2.6 Flow Cytometry Analysis and DAPI Staining 16 2.7 MTS Assay 16 2.8 RNA Extraction and RT-qPCR 17 2.9 Generation of Stable Cell Lines 17 3.0 Data Analysis and Statistics 18 CHAPTER 3 RESULTS AND DISCUSSION 19 3.1 Analysis of MicroRNA-142 Expression in Various Cell Lines 19 3.1.1 Measurement of Endogenous microRNA-142 19 3.1.2 Measurement of MicroRNA Activities in Different Cell Lines 19 3.1.3 Functional Assay of 4X MBS by Overexpressing pre-miR-142 Construct 20 3.2 The Classifier Circuit Design and Killing Experiments in Different Cell Lines 21 3.2.1 Logic Circuit Design and Regulatory Units in the Circuit 21 3.2.2 Consecutive Apoptotic Gene Testing 22 3.2.3 hBax Circuit Performance Analysis 22 3.3 Improvements for Low Transfection Efficiency 24 3.3.1 Generation of Stable Cell Lines by Flow Sorting (FACS) 24 3.3.2 P2A Peptide Function Testing 24 3.4 Combination of Apoptotic Genes Analysis 25 CHAPTER 4 CONCLUSION AND FUTURE WORK 27 FIGURES 29 REFERENCE 54 APPENDIX: GENE MAP 57 | |
| dc.language.iso | en | |
| dc.subject | 癌症 | zh_TW |
| dc.subject | 基因治療 | zh_TW |
| dc.subject | 邏輯匣 | zh_TW |
| dc.subject | 合成生物學 | zh_TW |
| dc.subject | 微型核醣核酸 | zh_TW |
| dc.subject | 核糖核酸干擾 | zh_TW |
| dc.subject | logic gate | en |
| dc.subject | synthetic biology | en |
| dc.subject | microRNA | en |
| dc.subject | gene therapy | en |
| dc.subject | RNA interfering | en |
| dc.title | 以微小核糖核酸表現差異調控非血液癌細胞差別性死亡之生物合成迴路 | zh_TW |
| dc.title | A MicroRNA-based Apoptotic Circuit for Differential Killing of Non-Hematopoietic Cancer Cells | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 106-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 江運金(YUN-JIN JIANG),吳?承(HSUAN-CHEN WU) | |
| dc.subject.keyword | 合成生物學,微型核醣核酸,基因治療,邏輯匣,核糖核酸干擾,癌症, | zh_TW |
| dc.subject.keyword | synthetic biology,microRNA,gene therapy,logic gate,RNA interfering, | en |
| dc.relation.page | 67 | |
| dc.identifier.doi | 10.6342/NTU201803124 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2018-08-13 | |
| dc.contributor.author-college | 生命科學院 | zh_TW |
| dc.contributor.author-dept | 分子與細胞生物學研究所 | zh_TW |
| 顯示於系所單位: | 分子與細胞生物學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-107-1.pdf 未授權公開取用 | 8.03 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
